秸秆生产乙醇的专利及专利号
1、需要一些玉米秸秆发酵酒精的相关资料,给的越全越好!
酒精是一种重要的工业原料,广泛应用于食品,化工、
医药等领域,而且可以部分或全部替代汽油,具有安全、清
洁、可再生等优点。传统的酒精生产主要以糖蜜、薯类、谷物
为原料发酵而成。近年来,随着人口增长和经济的发展以及
可利用耕地面积的减少使得酒精生产成本日趋增高,利用
丰富、廉价的玉米秸秆为原料生产酒精已成为必然趋势。我
国是一个农业大国,各种纤维素原料资源非常丰富,仅玉米
秸秆年产量大约2亿吨。目前,玉米秸秆除了少部分被利用
外,大部分以堆积、焚烧等形式直接倾入环境,极大地污染
了环境,也是一种资源浪费。如果将玉米秸秆经过预处理后
水解,其所含的纤维素和半纤维素可分解成糖,经发酵可转
化为酒精,转热效率可达30%以上。这样不但缓解人类所面
临的食物短缺,环境污染、资源危机等一系列问题,而且还
能实现人类的可持续发展,因而近年来玉米秸秆成为生物
能源领域的研究热点。
1玉米秸秆简介
玉米秸秆主要由植物细胞壁组成,基本成分为纤维素、
半纤维素和木质素等。木质素将纤维素和半纤维素层层包
围。纤维素是一种直链多糖,多个分子平行排列成丝状不溶
性微小纤维,半纤维素主要由木糖、少量阿拉伯糖、半乳糖、
甘露糖组成,木质素是以苯丙烷及衍生物为基本单位组成
的高分子芳香族化合物。其中,木质素是一种燃料,半纤维
素可水解为五碳糖,而纤维素水解为六碳糖比较困难。
2玉米秸秆预处理
由于玉米秸秆结构复杂,不仅纤维素、半纤维素被木质
素包裹,而且半纤维素部分共价和木质素结合,同时纤维素
具有高度有序晶体结构。因此必须经过预处理,使得纤维
素、半纤维素、木质素分离开,切断它们的氢键,破坏晶体结
构,降低聚合度。常见预处理方法有物理法、化学法、物理化
学法和微生物法等。
2.1挤压膨化法
该方法属于物理处理法,是将原料粉碎后调节至一定
水分,加入挤压机内,物料在螺杆的旋转推动下向前运动,
同时被剪切、挤压。并且在摩擦热的作用下温度可接近
140℃;然后从挤压机中喷出,物料的压力突然降低、体积迅
速膨胀,纤维素晶体结构被破坏,从而为纤维素的酶解处理
创造条件。这种预处理方法生产过程连续,不需要消耗蒸
汽,而且具有灭菌效果。
2.2湿氧化法
湿氧化法属于化学处理法,是指在加温加压条件下,水
和氧气共同参加的反应。湿氧化法对玉米秸秆处理效果很
好,纤维素遇碱,只引起纤维素膨胀,形成了碱化纤维素,但
能保持原来骨架,加入Na2CO3后起缓和作用,能防止纤维
素被破坏,使木质素和半纤维素溶解于碱液中而与纤维素
分离。这样得到的纤维素纯度较高,且副产物很少。匈牙利
Eniko等人采用湿氧化法在195℃,15min,1 200千帕O2,
Na2CO32g/L条件下,对60g/L玉米秸秆进行预处理。其中
60%半纤维素、30%木质素被溶解,90%纤维素呈固态分离出
来,纤维素酶解转化率(ECC)达85%左右。
2.3酸处理法
酸处理法也是一种化学处理法,这种方法可追溯到
1980年,而在德国可能更早。该法是采用硫酸、硝酸、盐酸、
磷酸等对纤维素原料进行预处理,其中以硫酸研究和应用
的最多。处理后,半纤维素首先水解得到无碳糖,纤维素的
结晶结构被破坏,原料疏松,可发酵性强。但水解前必须将
pH值调整到中性,还应该注意反应器的耐酸性。
2.4蒸汽爆破法
蒸汽爆破法属于物理处理化学法,是用蒸汽将原料加
热至180~200℃,维持5~30min,也可加热到245℃,维持
0.5~2.0min。高温高压造成木质素的软化,然后迅速使原料
减压,造成纤维素晶体和纤维束的爆裂,使木质素和纤维素
分离。该法成本较高,在我国可采用北京林业大学赖文衡教
授研究的间歇蒸汽汽爆器对玉米秸秆进行爆破处理,经这
种爆破器爆破的玉米秸秆,纤维素水解转化率(ECC)可达
70%以上。
2.5生物方法
生物处理方法具有节约化工原料、能源和减轻环境污
染等方面的优点。有许多微生物能产生木质素分解酶,如白
腐菌,其分解木质素的能力较强,但活性较低,而且微生物
处理周期长、菌体会破坏部分纤维素和半纤维素,降低纤维
素的水解率,因此难以得到利用。瑞典等北欧国家则利用无
纤维素酶的担子菌突变株对纤维素材料进行脱木质素处
理,取得了一定的效果。
玉米秸秆发酵生产燃料酒精研究现状及前景
武秀琴1,2马灿玲3
(1天津科技大学,中国天津300222;2河南工程学院环境工程系;3郑州师范高等专科学校生物系)
摘要玉米秸秆是一种丰富的再生资源,主要由纤维素、半纤维素、木质素组成。经过预处理、水解、发酵可生产酒精。预处理方法主要
有物理法、化学法、物理化学法及生物处理法;水解主要有酸水解法和酶水解法;发酵主要有直接发酵法、间接发酵法、同步糖化发酵法等。
介绍了玉米秸秆生产乙醇的关键技术进展情况。
关键词秸秆;酒精;预处理;研究进展
中图分类号TS262.2文献标识码A文章编号1007-5739(2008)13-0240-02
收稿日期2008-05-07
240现代农业科技》2008年第13期
3水解工艺
玉米秸秆进行预处理后,纤维素水解只有在催化剂存
在的情况下才能显著进行。常用催化剂是无机酸和酶,由此
分别形成了酸水解工艺和酶水解工艺,酸水解工艺又分为
稀酸水解和浓酸水解。水解主要是破坏纤维素、半纤维素的
氢键,使之转化为发酵的单糖。
3.1浓酸水解
用70%的硫酸50℃下在反应器中反应2~6h,半纤维素
首先被降解,溶解在水里的物质经过几次浓缩沥干后得到
糖,半纤维素水解后的固体残渣经过脱水后,在30%~40%的
硫酸中浸泡1~4h。溶液再经脱水和干燥后,在70%的硫酸下
反应1~4h,回收的糖和酸溶液经过离子交换,分离出的酸在
高效蒸发器中重新浓缩,剩余的固体残渣则再循环利用到
下一次的水解中。浓酸水解过程的主要优点是糖的回收率
高,大约有90%的半纤维素和纤维素转化的糖被回收。但浓
硫酸腐蚀性强,而且从经济方面考虑必须回收浓硫酸,增加
了工艺的复杂程度。
3.2稀酸水解
为了解决浓酸水解法存在的问题,一般采用稀硫酸
(0.2%~0.5%),在较温和条件下进行。此时水解一般分2个
阶段:第1阶段为低温操作,从半纤维素获得最大糖产量;
第2阶段采用高温操作使纤维素水解为六碳糖,糖的转化
率一般为50%左右。但稀酸水解容易产生大量副产物。
3.3酶水解
酶水解是利用产纤维素酶的微生物或者纤维素酶制
品,直接将半纤维素、纤维素水解成可发酵糖。与酸水解相
比,它可在常压下进行,反应条件温和、效率高、能耗低、选
择性强、环保效果好,显示出良好的应用价值和前景。水解
后可形成单一产物,产率较高(>95%)。匈牙利Eniko等人采
用NovoYm188等水解经湿氧化处理的玉米秸秆,酶解纤维
素转化率(ECC)高达85%。
该法的关键在于纤维素酶的获得和利用,同时要考虑
纤维素酶的成本。丹麦诺维信公司曾经宣布其纤维素酶生
产成本已比当初降低了12倍,现在该公司又取得了重大进
展,纤维素酶生产成本已比最初降低了20倍,生产lL燃料
级乙醇所需纤维素酶的成本已低于6.6美分。这极大地推进
了燃料乙醇的商业化进程。
4发酵工艺
由于农作物秸秆的相当部分由半纤维素构成,其水解
产物为以木糖为主的五碳糖,还有相当量的阿拉伯糖生成
(可占五碳糖的10%~20%),故五碳糖的发酵效率是决定过
程经济性的重要因素。木糖的存在对纤维素酶水解起抑制
作用,将木糖及时转化为酒精对玉米秸秆的高效率酒精发
酵是非常重要的。目前人们研究最多且最有工业应用前景
的木糖发酵产乙醇的微生物有3种酵母菌种,即管囊酵母、
树干毕赤酵母和体哈塔假丝酵母,主要的发酵方法有以下
几种。
4.1直接发酵法
直接发酵法是基于纤维分解细菌直接发酵纤维素生产
乙醇,不需要经过酸水解或酶水解前处理过程。一般利用混
合菌直接发酵,例如热纤梭菌(Clostridium thermoceUum)能
分解纤维素,但乙醇产率较低(50%),热硫化氢梭菌(Col-
stridium thermohydz)不能利用纤维素,但乙醇产率相当高,
如果进行混合发酵,产率可达70%。吕福英介绍了热纤梭菌
的生理生化特性及发酵生产的研究进展,并对热纤梭菌发
酵生产乙醇的因素以及乙醇等发酵产物对热纤梭菌的抑制
作用作了概述。但热纤梭菌产生乙醇也存在以下问题:发酵
不完全、发酵速度慢、终产物乙醇和有机酸对细胞有相当大
的毒性,需要进一步改进。
4.2间接发酵法
间接发酵是目前研究最多的一种方法。使用纤维素酶
水解纤维素,收集酶解后的糖液作为酵母发酵的碳源,先用
纤维素酶水解纤维素,酶解后的糖液作为发酵碳源。但是受
末端产物抑制,低细胞浓度以及底物基质抑制作用影响乙
醇产量。因此可采取的方法有:减压发酵法和阿尔法—拉伐
公司的Bi-otile法,还可以通过筛选在高糖浓度下存活并能
利用高糖的微生物突变菌株来克服基质抑制。
4.3同步糖化发酵法(SSF法)
这种方法的原理和间接发酵法相同,是为了克服反馈
抑制作用,由Gauss等提出的在同一反应器中糖化和发酵同
步进行。这样纤维素酶对纤维素的酶水解和发酵糖化过程
在同一装置内连续进行。水解产物葡萄糖由于菌体的不断
发酵而被利用,消除了葡萄糖因基质浓度对纤维素酶的反
馈抑制作用。在工艺上采用一步发酵法,简化了设备,节约
了总生产时间,提高了生产效率。当然也存在一些抑制因
素,如木糖的抑制作用,糖化和发酵温度不协调。张继泉在
这方面进行了大量的实验研究,并取得了一定的进展。
4.4固定化细胞发酵
固定化细胞发酵能使发酵罐内细胞浓度提高,细胞可
连续使用,使最终发酵液酒精浓度得以提高。常用的固定化
载体有海藻酸钠、卡拉胶、多孔玻璃等。固定化细胞的新动
向是混合固定细胞发酵,如酵母与纤维二糖酶一起固定化。
将纤维二糖基质转化成乙醇,被看作是玉米秸秆生产乙醇
的重要方法。
5结论与展望
今后,玉米秸秆生产酒精的研究方向将主要集中在以
下几个方面。
5.1预处理方法
单纯的物理法和化学法不足以破坏纤维素晶体结构以
及去除半纤维素和木质素,应综合运用物理法与化学法,一
步完成预处理和水解2个阶段,有效提高纤维素的水解率。
5.2糖化工艺
发酵过程的酒精产率受许多因素影响,其中主要是水
解效率和单糖产量。比较而言,酶水解较酸水解有较大的优
越性,将成为今后糖化工艺的主要发展方向。
(下转第243页)
大田农艺
241现代农业科技》2008年第13期
区,在生产中培育优质高产栽培典型,将优良品种、生产技
术传授给农民,提高生产水平,从而自觉地实行生产操作规
程。为此,课题组要求各县(市)区狠抓园区建设工作,3年总
计建设20个千亩以上园区,均收到了良好的效果。在新品
种引进种植展示园和绿色有机杂粮规范化种植展示园方
面,通过实地技术操作和展示效果验证,产生了较强的辐
射带动作用。
2.7为确保实现标准化生产,在栽培管理上大力推选“九
改”集成技术
实现了从基地到餐桌全过程质量控制,涌现出许多谷
物优质高产典型。如2005年北票市北四家子乡南四家子村
集中连片种植朝新谷5号33hm2,平均产量7 740kg/hm2,最
高产量达到9 780kg/hm2。
2.8兴建龙头企业,培育绿色有机杂粮市场,延长产业链,
提高产品附加值
“辽西绿色有机杂粮生产基地建设与食品开发”项目实
施3年,累计建设杂粮生产基地5.33万公顷以上,其中绿色
有机杂粮生产基地2.16万公顷,从而形成了规模效应,为农
产品加工业提供了可靠的优质原料保障。目前全市共有各
类杂粮加工企业743个,年生产加工销售能力100万吨,其
中绿色有机杂粮6万吨,实现销售收入4.5亿元。同时,杂粮
基地规模化也带动了当地的杂粮市场建设。东北最大的杂
粮集散地建平朱碌科,建起25 000m2的杂粮交易批发市场,
绿色有机杂粮收购、加工、销售“十里长街”已初具规模,产
品主要销往国内大中城市并出口日本、韩国、德国、新西兰
等国家。
3项目成效
3.1规模大、有特色
建设绿色有机杂粮生产基地与食品开发,认证标识累
计规模为2.16万公顷,占全省认证总面积的60%,具有先进
农业区域经济与外向型经济的特色。经国内同行专家验收
一致认为:该项目产业化规模和技术水平在我国同类地区
具有领先地位。
3.2为旱作农业开辟了一条新路
针对辽西干旱地区的自然地理条件的特点,科学地开
发利用有限的耕地,实施绿色、有机杂粮标准认证,提高了
农产品的质量,创造了农业干旱地区增产增收的新途径。
3.3创出一条“科研+公司+农户+生产基地”四位一体的新
模式
形成产、加、销良性循环,拉动绿色有机杂粮加工业的
发展,实施农业名牌战略,提高了绿色有机杂粮食品的市场
占有率。3年累计出口创汇1.37亿元,促进了外向型经济的
迅猛发展。
3.4提高了农产品的附加值
3年中,绿色A级杂粮平均产值为1.92万元/hm2,平均
效益为1.60万元/hm2;有机食品产值2.79万元/hm2,效益为
2.41万元/hm2。绿色、有机杂粮平均效益为2.03万元/hm2,比
项目区外杂粮对照平均效益增收1.03万元/hm2。
3.5改善了农业生态环境
绿色、有机农业就是生态农业。通过该项目的实施,在
认证的区域范围内,从根本上改变了农业的耕作方式,保护
了生态体系及周围环境生物的多样性,有效地减少和治理
了环境污染,不仅提供了安全的食品,而且促进了人与自然
的和谐。
通过3年绿色有机杂粮生产基地建设项目的实施,极
大地推进了科技产业化进程,推动了外向型经济的快速发
展,促进了第二、第三产业的繁荣,加速了杂粮新品种的更
新换代。由于推广粮草兼用型朝新谷5号新品种粮草比为
1∶1.3,不仅促进了农业的二元结构向三元结构的转移,而且
还带动了辽西畜牧业的发展。实践证明:干旱地区建设绿色
有机杂粮生产基地,在科技产业化中发挥了重要的作用,具
有广阔的前景。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(上接第241页)
5.3发酵菌株
菌种是发酵工业的灵魂,在玉米秆原料生产酒精过程
中,运用现代的育种技术培育出高效的直接发酵菌株,在适
应特殊基质条件、简化生产工艺等方面将会有所突破。若能
筛选到抗高浓度糖的基因突变菌株则可以克服纤维素原料
水解过程的抑制效应,提高发酵效率。
5.4发酵工艺
可以采用一定的技术手段,将发酵过程产生的乙醇不
断抽出,使发酵罐中的乙醇浓度≤10%,减轻乙醇对菌株生
长及乙醇生成的抑制作用,降低生产成本。
以玉米秸秆等纤维素生产酒精技术是世界各国研究的
热点,与其他生物能源、替代能技术相比,无论是在经济合
理性、技术可行性方面,还是在资源可持续性和环境协调性
方面都具有明显的优势,而且还可解决我国的石油资源短
缺和环境污染问题,有利于保证国家能源安全和社会协调
发展。
6参考文献
[1]张继泉,郭利美,王瑞明.玉米秸秆发酵生产燃料酒精工艺探讨[J].广
州食品工业科技,2004,19(2):24-25.
[2]张强,陆军,侯霖,等.玉米秸秆发酵法生产燃料酒精的研究进展[J].
饲料工业,2005,26(9):20-23.
[3]吕伟民,王宇,傅国红,等.玉米秸秆发酵生产燃料酒精[J].酿酒,
2002,29(5):84
[4]张强,陆军,侯露,等.玉米秸秆制酒精———秸秆预处理及水解方法的
探讨[J].酿酒科技,2004(4):56-58.
[5]罗鹏,刘忠.用木质纤维原料生产乙醇的预处理工艺[J].酿酒科技,
2005(8):42-47.
[6]蒋应梯,庄晓伟,王衍彬.利用农作物开发生物能源和有机肥初探[J].
生物质化学工程,2006,40(6):48-50.
[7]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展
[J].酿酒,2005(3):13-16.
[8]张继泉,孙玉英,王瑞明,等.玉米秸秆水解液生产燃料酒精的研究
[J].西部粮油科技,2003(5):63-65.
[9]王乃菊,宋萍.农作物秸秆制取燃料酒精的研究[J].酿酒,2007,34(6):
51-53.
[10]常秀莲.木质纤维素发酵酒精的探讨[J].酿酒科技,2001(2):39-42.
[11]BOBLETER O.Hydrothermal degradation ofpolymers derivedfrom
plants[J].Progressin Polymer Science,1994,19(5):797-841.
大田农艺
243
2、如何利用秸秆造酒精?
因作物成熟过程中植株体内的养分向种子或果实集中,所以秸秆中剩余的可消化营养成分很少,大部分为不可消化或难消化的成分,如纤维素、木质素等。奶牛可以少量利用秸秆。为了提高秸秆的消化利用率、适口性和采食量,秸秆饲用前常进行处理。一般的处理方式有:①切短、粉碎、浸泡、蒸煮等物理方法,以改变秸秆的物理性状,提高奶牛对秸秆的利用率和采食量;②氨化、碱化等化学方法,碱化用氢氧化钠和石灰水等浸泡,氨化用液氨、氨水、尿素、碳氨等处理,以软化秸秆,提高适口性和消化率;③微贮等生物的方法,用微生物来分解秸秆中的纤维素和木质素,以提高秸秆的营养价值。
3、有用玉米秸秆提炼乙醇的设备吗?
有
4、麦杆做生物燃料的技术
1,生物燃料 Biofuel
燃料的名称最初起源于植物。包括所有从木材和麦杆中提炼的生物燃料诸如:饲料和乙醇等。生物燃料的能量由太阳能转换而来,生物以糖的形式将太阳能转换为化学能。生物能源之所以可以再生,主要是因为一旦它们用完后,可以在短时间内被重新生成,因为只要我们不将所有长成的生物都用完。过多的砍伐树木将对生物能源的转换有负面影响。泥煤不再被认为是生物燃料。
第二代生物燃料 编辑词条
,2,第二代生物燃料指的是摆脱利用玉米等粮食作物为原料转化为生物燃料的应用模式,
继而以麦秆、草和木材等农林废弃物为主要原料,采用生物纤维素转化为生物燃料的模式,发展纤维素乙醇。
3,麦秆
详细解释麦子的茎。
宋 何薳 《春渚纪闻·胶黐取虎》:“翌晨集庄户散置胶黐,至暮得斗馀,尽令涂场间麦秆上。”
用途 ,1、可制作板材。2、可生产肥料。3、稻杆可用于种植业,麦杆可用于生产饲料。4、可用于造纸用。5.用于生活取暖 6.用于制作生物燃料,以摆脱人类对石油的依赖。7。可制作工艺品。
4 技术
纤维素原料热裂解等更有潜力的第二代生物燃料生产技术正取代玉米基乙醇汽油等燃料生产技术。
快速热裂解技术。德国鲁奇公司与卡尔斯鲁厄研究中心合作建设以纤维素为原料制取生物燃料的中试装置。技术路线是:先将秸秆、木屑等薄壁植物研磨后送反应器,快速加热到500℃,使其裂解冷凝成浆液;再将浆液送炼油厂转化为合成气;合成气通过费托工艺转化为所需燃料。此燃料能以任何比例与化石燃料调和使用。该装置每年可转化约20万吨干燥木质纤维素原料,产能约13.4万吨/年。此路线比合成甲醇更有效率。2011年两家将共建气化装置。
酶发酵技术。瑞士Syngenta公司等企业合作开发利用酶发酵的第二代生物燃料技术,包括开发一系列与纤维素乙醇有关的新型酶制剂。这些酶可将经过预处理的纤维素转化为混合糖,这是关键步骤。将纤维素转化成生物燃料要有三个突破:预处理(纤维素的化学制备)、糖化(通过酶将预处理后的纤维素转化为可发酵的糖)和发酵(开发新的微生物将糖发酵成乙醇或其他燃料)。
水生物技术。水生藻类物质可转化为生物柴油,通过产生糖类物质发酵后变为乙醇。法国Eco-Solution公司拥有的专利技术,可使反应器中海藻生长速度快于自然生长。该公司认为开放式池塘和光反应器结合的方法经济性最好。
5 应用
(图)麻风树
第二代生物燃料已成为许多国家开发生物燃料时的新宠。德国大众公司等欧洲汽车制造商就与德国佛莱堡科伦工业集团开展合作,共同开发取自稻草或秸秆的第二代生物燃料,该工业集团年产2万吨的“第二代生物柴油”项目已于2008年启动。美国能源部通过资金支持国家可再生能源实验室与企业合作,对纤维素催化酶进行优化,大大地降低其成本,使第二代生物燃料技术有望于2010年投入实现产业化和商业化,UOP公司等许多新能源企业纷纷组建第二代生物燃料生产厂。巴西石油公司则研究从秸秆、稻壳等农业废弃物中提炼乙醇,并加紧生产厂的建设。从2008年开始,许多国家对第二代生物燃料的投入呈几何数字增长。
对于第二代生物燃料的关键技术是催化酶技术,酶是一种生物催化剂,可使生物化学反应在温和的环境下进行得更加迅速、效率更高。新型酶制剂能将植物中的纤维素分解成可发酵糖,并进一步转化为乙醇。就在几年前,该技术的成本还比较高,这两年来,随着生物技术的不断创新,其成本已经下降数倍,从而使第二代生物燃料越来越具有竞争力。目前的新型酶制剂非常适合用秸秆这种大量存在的农业废弃物来生产乙醇。
6未来
(图)第二代生物燃料
2008年11月,巴西政府在圣保罗举办了有90个国家和24个国际组织参加的“国际生物燃料大会”。大会预计,以纤维素乙醇为代表的第二代生物燃料将在2015年后实现工业化生产。
不过,世界最大石油天然气集团之一道达尔集团的炼油与销售部农业开发主管雅克·布隆迪却认为,第二代生物能源的一些关键工艺涉及一系列复杂过程和技术,需要很大的投资和大量的原材料,要实现工业化生产还需经历一个漫长的过程。他说,第二代生物燃料的实际生产成本还是一个重要的未知数。另外,在生物质燃料的经济可行性研究方面,原料收集也是一个受关注的问题。生物质原料极其分散,采集成本、运输成本和生产成本都可能成为制约燃料乙醇业发展的瓶颈。
5、怎样利用玉米桔秆提炼乙醇
高油价催生燃料乙醇 秸秆能源化效益巨大 面对能源的紧缺,石油的涨价,世界上很多国家都在探索解决之 道。2000年,安徽丰原集团有限公司(以下简称丰原集团)就着手在高回收、低成本的发酵工艺方面成功探索利用玉米、薯类等生物质进行深加工,以替代石油产品的生产技术。现在,我国很多地方都已经开始将玉米生产的燃料乙醇,以10%的比例直接混合到汽油中使用。丰原集团在燃料乙醇生产中,与大连理工大学一起研制出世界最先进的自絮凝沉降颗粒酵母发酵生产工艺,使生产成本大大降低。国家发展和改革委员会决定用燃料乙醇替代石油百万吨试点项目开始后,丰原集团占据40%份额。去年,丰原集团燃料乙醇的产能已达44万吨。 新技术的重大突破 走进丰原集团发酵技术国家工程研究中心,记者看到技术人员正在紧张地忙碌着,农作物的秸秆经粉碎、发酵,再经分离、提纯后就成了乙醇。 该中心副主任、丰原集团副总工程师宋家林告诉记者,丰原集团以玉米、薯类等生物质为原料生产的燃料乙醇、乙烯等产品均已进入市场并获得良好效益,利用农产品精深加工全面替代石油产品的许多关键技术已取得重大突破,并已经建成产业化项目,效益可观。据介绍,目前利用秸秆生产乙醇的中试装置已投产,年产乙醇300吨。
石油是应用最为广泛的能源。我国2004年进口原油1.2亿吨,比上年增加4.8%。2010年石油需求量将达4亿吨,而国内供给能力最大为1.7亿吨。用玉米、薯类等加工石油产品替代品,即用生物化工开发可再生的生物能源和生物化工产品,是各国应对能源危机的一条重要思路。 丰原集团经过长期研究和市场跟踪,认为如果原油价格不低于35美元/桶、玉米价格不高于1400元人民币/吨,用玉米加工转化替代石油产品就有利可图。现在,我国玉米年产量近1.2亿吨,其中8000万吨没有加工转化直接用作饲料,所以,完全可以扩大替代石油的加工转化力度。用3000万吨玉米生产的乙醇,可替代1000万吨汽油;用3000万吨玉米可生产550万吨乙烯,相当于目前中石化、中石油两个公司年生产能力的总和。而原料生产过程中还有30%可转化为饲料。 据介绍,秸秆能源化的瓶颈主要有两处:一是没有找到或组合出可高效水解纤维素的酶,从而无法使廉价的秸秆一次完成预处理;二是没能培育出高效转化由半纤维素转变而来的木糖的发酵菌种。而丰原发酵技术国家工程技术中心通过多年的研究,突破了国际上“秸秆生产乙醇必须构建同时发酵木糖和葡萄糖生产乙醇工程菌”的思路,创造性地开发了先分离后发酵的工艺路线。这一重大技术突破,不仅大大降低了秸秆转化为能源的成本,而且使我国取得了这一领域的领先地位,为我国大规模的秸秆利用奠定了基础。
“秸秆能源化”效益巨大 负责此项研究工作的丰原集团总工程师薛培俭说,用玉米生产乙醇,3.1吨玉米可生产一吨燃料乙醇,如改用秸秆生产,大约5吨~6吨秸秆就能生产一吨乙醇。我国平均每年富余作物秸秆7亿多吨,如果利用秸秆转化技术,可以大大节约石油的消耗量。 专家还指出,从近期看,生物酒精(乙醇)作为燃料,可以部分替代石油能源。从远期看,乙醇则将成为支撑以乙烯为原料的石化工业的基础原料。一直以来,石化工业的基础原料乙烯是从石油中提取的,目前乙醇生产乙烯的技术已经成熟。在未来20年内,由于石油资源的日趋紧张,再加上生物质为原料的乙醇大规模工业化生产,成本相对于石油已具有可竞争性,乙醇将顺理成章地进入工业基础原料领域。 农业专家石元春院士指出,发展生物质能源对我国而言,更重要意义在于发展农业和扩大农民增收。他认为,生物质产业从原料到产品,为农业在初级农产品生产和农产品加工之外,开拓了新战场,使农民又多了一条宽阔的增收渠道。 丰原集团董事长李荣杰给记者算了一笔账,如果将秸秆利用技术产业化,以50公里为半径建设小型秸秆加工厂,那么按秸秆到厂价每吨400元,农民每亩就可增收200元以上。专家测算,如果我国每年能利用全国50%的作物秸秆、40%的畜禽粪便、30%的林业废弃物,
6、玉米秸秆制乙醇技术
、发酵法
糖质原料(如糖蜜、亚硫酸废液等)和淀粉原料(如甘薯、玉米、高梁等)发酵;
发酵法制乙醇是在酿酒的基础上发展起来的,在相当长的历史时期内,曾是生产乙醇的唯一工业方法。
发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。这些物质经一定的预处理后,经水解(用废蜜糖作原料不经这一步)、发酵,即可制得乙醇。
发酵液中的质量分数约为6%~10%,并含有其他一些有机杂质,经精馏可得95%的工业乙醇。
2、乙烯水化法
乙烯直接或间接水合。
乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应,生产乙醇:
CH2═CH2 + H─OH→C2H5OH
(该反应分两步进行,第一步是与醋酸汞等汞盐在水-四氢呋喃溶液中生成有机汞化合物,而后用硼氢化钠还原)
此法中的原料—乙烯可大量取自石油裂解气,成本低,产量大,这样能节约大量粮食,因此发展很快。
3、煤化工
工业制乙醇还主要是通过乙烯氢化制得,而适合中国国情的技术就是利用煤化工技术,将煤转化为合成气,直接或者间接的合成乙醇。
4、联合生物加工
利用生物能源转化技术生产乙醇能缓解非再生化石能源日渐枯竭带来的能源压力
7、乙醇是未来内燃机的首选环保型液体燃料,它可以由绿色植物的秸秆制取,制取乙醇的
(C6H12O6)n===催化水解===nC6H12O6
C6H12O6===发酵===2C2H5OH +2CO2
8、生产乙醇的工艺流程及生产方法。
工业上玉米制造乙醇酒精的流程是:
玉米——粉碎——蒸煮(糊化)——糖化(加糖化酶)——发酵(加酵母菌种)——蒸馏塔(蒸馏)——精馏塔(精馏)——酒精
酵母菌将糖发酵成酒精的过程不是简单的化学反应,其机理至今仍莫衷一是。
9、“生物乙醇”是一种清洁能源,传统生产主要以甘蔗、玉米、薯类为原料制取,目前已研发出由木质纤维素(如
A