当前位置:首页 » 条码专利 » 发夹RNA形成专利

发夹RNA形成专利

发布时间: 2022-07-29 15:07:40

1、点阵法为什么可以发现RNA序列的发夹状结构?

对不起,无此网络资源...

2、dna与rna在组成及结构上有什么区别

1)RNA主要存在于细胞质中,DNA主要集中在细胞核内(线粒体和叶绿体中也有各自的DNA)。

2)在碱基成分中,RNA包括腺嘌呤、鸟嘌呤、尿嘧啶、胞嘧啶四种,而DNA中尿嘧啶换成了胸腺嘧啶;在核糖成分上,RNA是五碳核糖,而DNA是脱氧核糖;

3)在核苷酸链接方式上,DNA与RNA一样,是3‘,5’-磷酸二酯键;

4)在结构上,大多数的RNA呈单链,不具有双螺旋结构,只可呈双螺旋区的构象。一般RNA具备40~70%的螺旋区。由磷酸二酯键连接的多核苷酸链可自身回折,链上的碱基对可按一定规律 (A-U, G-C) 形成碱基对。RNA链由于自身回折的结果可以形成“发夹”结构,这种“发夹”结构可进而形成螺旋结构。其中tRNA高级结构研究较清楚,至今从已研究过的100多种tRNA的二级结构看,都呈“三叶草”形,并且在结构上有某些共同之处,可将其划分为“四臂四环”。

tRNA的三级结构在二级结构基础上,未配对碱基再按碱基配对原则,一个突环上的碱基由于空间位置的改变而与另一个突环上的互补碱基形成氢键,这样就形成了三维空间的立体结构,全貌为一倒“L”形。

而DNA在一级结构基础上,通过氢键及碱基堆积力形成双螺旋二级结构,如图。并进一步扭曲形成超螺旋的三级结构。

3、简述RNA转录的基本过程和特点?

可将RNA转录分为识别与起始、延长和终止三个阶段。
(一)识别

转录是从DNA分子的特定部位开始的,这个部位也是RNA聚合酶全酶结合的部信这就是启动子。为什么RNA聚合酶能够仅在启动子处结合呢?显然启动子处的核苷酸序列具有特殊性,为了方便,人们将在DNA上开始转录的第一个碱基定为+1,沿转录方向顺流而下的核苷酸序列均用正值表示;逆流而上的核苷酸序列均用负值表示。

对原核行物的100多个启动子的序列进行了比较后发现;在RNA转录起始点上游大约-10bp和-35bp处有两个保守的序列,在-10bp附近,有一组5’-TATAATpu的序列,这是Pribnow首先发现的称为Pribnow框,RNA聚合酶就结合在互部位上。-35bp附近,有一组5’-TTGACG-的序列;已被证实与转录起始的辨认有关,是RNA聚合酶中的δ亚基识别并结合的位置。-35序列的重要性还在于在很大程度上决定了启动子的强度。

由于RNA聚合酶分子很大,大约能覆盖70bp的DNA序列,因此酶分子上的一个适合部位就能占据从-35到-10序列区域(图17-4)。

图17-4 Structure of the prokaryotic promoter region.

真核生物的启动子有其特殊性,真核生物有三种RNA聚合酶,每一咱都有自己的启动子类型。以RNA聚合酶Ⅱ的启动子结构为例,人们比较了上百个真核生物RNA聚合酶Ⅱ的启动子核苷酸序列伯发现;在-25区有TATA框,又称为Hogness框或Goldberg-Hogness框。其一致序列为T28A97A93A85A63T37A83A50T37,基本上都由A,T碱基所组成,离体转录实验表明,TATA框决定了转录起点的选择,天然缺少TATA框的基本可以从一个以上的位点开始转录。在-75区有CAAT框,其一致的序列为GGTCAATCT。有实验表明CAAT框与转录起始频率有关,例如缺失GG,兔子的β珠蛋白基因转录效率只有原来的12%(图17-5)。

图17-5 Eukaryotic gene promoter sequences

除启动子外,真核生物转录起始点上游处还有一个称为增强子的序列,它能极大地增强启动子的活性,它的位置往往不固定,可存在于启动子上游或下游,对启动子来说它们正向排列和反向排列均有效,对异源的基因也起到增强作用,但许多实验证实它仍可能具有组织特异性,例如免疫球蛋白基因的增强子只有在B淋巴细胞内活性最高,胰岛素基因和胰凝乳蛋白酶基因的增哟子也都有很高的组织的特异性。

(二)转录起始和延伸

在原核生物中,当RNA聚合酶的δ亚基发现其识别位点时,全酶就与启动子的-35区序列结合形成一个封闭的启动子复合物。由于全酶分子较大,其另一端可在到-10区的序列,在某种作用下,整个酶分子向-10序列转移并与之牢固结合,在此处发生局部DNA12-17r 的解链形成全酶和启动子的开放性复合物。在开放性启动子复合物中起始位点和延长位点被相应的核苷酸前体充满,在RNA聚合酶β亚基催化下形成RNA的第一个磷酸二酸键。RNA合成的第一个核苷酸总有GTP或ATP,以GTP常见,此时δ因子从全酶解离下来,靠核心酶在DNA链上向下游滑动,而脱落的δ因子与另一个核心酶结合成全酶反复利用。

图17-6 转当起始复合物的模式

真核生物转录起始十分复杂,往往需要多种蛋白因子的协助,已经知道,在所有的细胞中有一类叫做转录因子的蛋白质分子,它们与RNA聚合酶Ⅱ形成转录起始复合物,共同参与转录起始的过程。

真核生物基因中,有专门为蛋白质编码的基因,这些基因由RNA聚合酶Ⅱ负责进行转录起始关键性作用。根据这些转录因子的作用特点可大致分为二类;第一类为普遍转录因子它们与RNA聚合酶Ⅱ共同组成转录起始复合物,转录才能在正确的位置上开始。普遍转录因子是由多种蛋白质分子组成的,其中包括特异结合在TATA盒上的蛋白质,叫做TATA盒结合蛋白,还有至成一组复合物叫做转录因子ⅡD。TFⅡD再与RNA聚合酶Ⅱ结合完成转录起始复合物的形成。(图17-6)

除TFⅡD以外,在细胞核提取物中还发现TFⅡA,TFⅡF,TFⅡE,TFⅡH等,它们在转录起始复合物组装的不同阶段起作用,像TFⅡH就有旋转酶活性,它可利用ATP分解产生的能量,介导起始点双螺旋的打开,使RNA聚合酶得以发挥作用。从中也不难看出真核细胞中基因转录的起始是基因的表达调控的关键,这么多蛋白质分子之间相互作用,以及这些蛋白质分子DNA调控无件相结合,构成控制基因转录开始的复杂体系。

第二类转录因子为组织细胞特异性转录因子或者叫可诱导性转录因子,这此TF是在特异的组织细胞或是受到一些类固醇激素,生长因子或其它刺激后,开始表达某些特异蛋白质分子时,才需要的一类转录因子。

例如:激活剂蛋白-1就是一类可诱导的转录因子,它是由多蛋白质成份组成的复合物,可发由fos基因和jun基因家庭的蛋白质产物组成。当某些生长因子细胞因子和某些化学物质在细胞外刺激这些细胞时,使细胞内JUN蛋白和FOS蛋白发生磷酸化,特异地结合到c-jun基因和c-fos基因的启动子部位,使这些基因转录并翻译出相应的c-JUN蛋白和c-FOS蛋白,这些蛋白质就可组成二聚体的AP-1,AP-1就会结合到细胞核中靶基因的调控部位,促进或激活靶基因的转录活性,产生出由于细胞外刺激因素作用下,这些细胞做出的特异反应一表达出的特异蛋白须分子。有关详细内容见信号转录一章。

RNA链的延长靠核心酶的催化,在起始复合物上第一个GTP的核糖3’-OH上与DNA模板能配对的第二个三磷酸核苷起反应形成磷酸二酯键。聚合进去的核苷酸又有核糖3’-OH游离,这样就可按模板DNA的指引,一个接一个地延长下去。因此RNA链的合成方面也是5’--3。由于DNA链与合成的RNA链具有反平行关系,所以RNA聚合酶是沿着DNA链3’--5’方向移动。整个转录过程是由同一个RNA聚合酶来完成的一个连续下断的反应,转录本RNA生成后,暂时与DNA模板链形成DNA·RNA杂交体,长度约为12个碱基对,形成一个转录泡(图17-7)。转录速度大允是每秒钟30-50个核苷酸,但并不是以恒定速度进行的。在电子显微镜下观察转录现象,可以看到同一DNA模板上,有长短不一的新合成的RNA链散开成羽毛状图形,这说明在同一DNA基因上可以有很鑫的RNA聚合酶在同时催化转录,生成相应的RNA链。而且较长的RNA链上已看到核糖体附着,形成多聚核糖体。说明某些情况下,转录过程未完全终止,即已开始进行翻译。

图17-7 Diagrammatic representation of DNA transcription by E.coli RNA polymerase.The polymerase unwinds a stretch of DNA about 17base pairs in length forming a transcriptional bubble thatprogresses along thd DNA.The DNA has to unwind ahead of the polymerase and rewind behind it .The newly formed RNA forms a RNA-DNA double helix about 12 bae pairs long.

转录的延长阶段,原核生物与真核生物之间没有太大差别。

(三)转录的终止(Termination)

转录是在DNA模板某一位置上停止的,人们比较了若干原核生物RNA转录终止位点附近的DNA序列,发现DNA模板上的转录终止信号有两种情况,一类是不依赖于蛋白质因子而实现的终止作用,另一类是依赖蛋白质辅因子才能实现终止作用,这种蛋白质辅因子称为释放因子,通常又称ρ因子。两类终止信号有共同的序列特征,在转录终止之前有一段回文结构,回文序列是一段方向相反,碱基互补的序列,在这段互补序列之间由几个碱基隔开,不依赖ρ因子的终止序列中富含G·C碱基对,其下游6-8个A;而依赖ρ因子的终止序列中G·C碱基对含量较少,其少游也没有因固定的特征,其转录生成的RNA可形成二级结构即柄一噜噗结构,又称发夹结构,这样的二级结构可能与RNA聚合酶某种特定的空间结构相嵌合,阻碍了RNA聚合酶进一步发挥作用(图17-8)。除DNA模板本身的终止信号外,在入噬菌体中,发现一些蛋白质有协助RNA聚合酶跨越终止部位的作用,叫做抗转录终止蛋白,例如入噬菌体的N基因产物。

4、生物化学RNA三级结构的作用力是什么,主要

绝大部分RNA分子都是线状单链,但是RNA分子的某些区域可自身回折进行碱基互补配对,形成局部双螺旋。在RNA局部双螺旋中A与U配对、G与C配对,除此以外,还存在非标准配对,如G与U配对。RNA分子中的双螺旋与A型DNA双螺旋相似,而非互补区则膨胀形成凸出(bulge)或者环(loop),这种短的双螺旋区域和环称为发夹结构(hairpin)。发夹结构是RNA中最普通的二级结构形式,二级结构进一步折叠形成三级结构,RNA只有在具有三级结构时才能成为有活性的分子。RNA也能与蛋白质形成核蛋白复合物,RNA的四级结构是RNA与蛋白质的相互作用。
(一) tRNA的结构
tRNA约占总RNA的15%,tRNA主要的生理功能是在蛋白质生物合成中转运氨基酸和识别密码子,细胞内每种氨基酸都有其相应的一种或几种tRNA, 因此tRNA的种类很多,在细菌中约有30~40种tRNA,在动物和植物中约有50~100种tRNA。
1. tRNA一级结构:
tRNA是单链分子,含73~93核苷酸,分子质量为24 000~31 000,沉降系数4S。含有10%的稀有碱基。如二氢尿嘧啶(DHU)、核糖胸腺嘧啶(rT)和假尿苷(ψ)以及不少碱基被甲基化, 其3’端为CCA-OH,5’端多为pG, 分子中大约30%的碱基是不变的或半不变的,也就是说它们的碱基类型是保守的。
2. tRNA二级结构:
tRNA二级结构为三叶草型。配对碱基形成局部双螺旋而构成臂,不配对的单链部分则形成环。三叶草型结构由4臂4环组成。氨基酸臂由7对碱基组成,双螺旋区的3’末端为一个4个碱基的单链区-NCCA-OH 3’,腺苷酸残基的羟基可与氨基酸α羧基结合而携带氨基酸。二氢尿嘧啶环以含有2个稀有碱基二氢尿嘧啶(DHU)而得名,不同tRNA其大小并不恒定,在8-14个碱基之间变动,二氢尿嘧啶臂一般由3~4对碱基组成。反密码环由7个碱基组成,大小相对恒定,其中3个核苷酸组成反密码子(anticodon),在蛋白质生物合成时,可与mRNA上相应的密码子配对。反密码臂由5对碱基组成。额外环在不同tRNA分子中变化较大可在4~21个碱基之间变动,又称为可变环,其大小往往是tRNA分类的重要指标。TψC环含有7个碱基,大小相对恒定,几乎所有的tRNA在此环中都含TψC序列,TψC臂由5对碱基组成。
3. tRNA的三级结构:
二十世纪七十年代初科学家用X线射衍技术分析发现tRNA的三级结构为倒L形(图3-20b)。tRNA三级结构的特点是氨基酸臂与TψC臂构成L的一横,-CCAOH3’末端就在这一横的端点上,是结合氨基酸的部位,而二氢尿嘧啶臂与反密码臂及反密码环共同构成L的一竖,反密码环在一竖的端点上,能与mRNA上对应的密码子识别,二氢尿嘧啶环与TψC环在L的拐角上。形成三级结构的很多氢键与tRNA中不变的核苷酸密切有关,这就使得各种tRNA三级结构都呈倒L形的。在tRNA中碱基堆积力是稳定tRNA构型的主要因素。
(二)mRNA
原核生物中mRNA转录后一般不需加工,直接进行蛋白质翻译。mRNA转录和翻译不仅发生在同一细胞空间,而且这两个过程几乎是同时进行的。真核细胞成熟mRNA是由其前体核内不均一RNA(heterogeneous nuclear RNA,hnRNA)剪接并经修饰后才能进入细胞质中参与蛋白质合成。所以真核细胞mRNA的合成和表达发生在不同的空间和时间。mRNA的结构在原核生物中和真核生物中差别很大。下面分别作一介绍:
1. 原核生物mRNA结构特点
原核生物的mRNA结构简单,往往含有几个功能上相关的蛋白质的编码序列,可翻译出几种蛋白质,为多顺反子。在原核生物mRNA中编码序列之间有间隔序列,可能与核糖体的识别和结合有关。在5’端与3’端有与翻译起始和终止有关的非编码序列,原核生物mRNA中没有修饰碱基, 5’端没有帽子结构,3’端没有多聚腺苷酸的尾巴(polyadenylate tail,polyA尾巴)。原核生物的mRNA的半衰期比真核生物的要短得多,现在一般认为,转录后1min,mRNA降解就开始。
2. 真核生物mRNA结构特点
真核生物mRNA为单顺反子结构,即一个mRNA分子只包含一条多肽链的信息。在真核生物成熟的mRNA中5’端有m7GpppN的帽子结构,帽子结构可保护mRNA不被核酸外切酶水解,并且能与帽结合蛋白结合识别核糖体并与之结合,与翻译起始有关。3’端有polyA尾巴,其长度为20~250个腺苷酸,其功能可能与mRNA的稳定性有关,少数成熟mRNA没有polyA尾巴,如组蛋白mRNA,它们的半衰期通常较短。
(三)rRNA的结构
rRNA占细胞总RNA的80%左右,rRNA分子为单链,局部有双螺旋区域(图3-22)具有复杂的空间结构,原核生物主要的rRNA有三种,即5S、16S和23S rRNA,如大肠杆菌的这三种rRNA分别由120、1542和2904个核苷酸组成。真核生物则有4种,即5S、5.8S、18S和28S rRNA, 如小鼠,它们相应含121、158、1874和4718个核苷酸。rRNA分子作为骨架与多种核糖体蛋白(ribosomal protein)装配成核糖体。
所有生物体的核糖体都由大小不同的两个亚基所组成。原核生物核糖体为70S,由50S和30S两个大小亚基组成。30S小亚基含16S的rRNA和21种蛋白质,50S大亚基含23S和5S两种rRNA及34种蛋白质。真核生物核糖体为80S,是由60S和40S两个大小亚基组成。40S的小亚基含18S rRNA及33种蛋白质,60S大亚基则由28S、5.8S和5S 3种rRNA及49种蛋白质组成。
(四)其他RNA分子
20世纪80年代以后由于新技术不断产生,人们发现RNA有许多新的功能和新的RNA基因。细胞核内小分子RNA(small nuclear RNA,snRNA)是细胞核内核蛋白颗粒(Small nuclear ribonucleoprotein particles,snRNPs)的组成成分,参与mRNA前体的剪接以及成熟的mRNA由核内向胞浆中转运的过程。核仁小分子RNA(small nucleolar RNA,snoRNA)是类新的核酸调控分子, 参与rRNA前体的加工以及核糖体亚基的装配。胞质小分子RNA(small cytosol RNA, scRNA)的种类很多,其中7S LRNA与蛋白质一起组成信号识别颗粒(signal recognition particle,SRP), SRP参与分泌性蛋白质的合成,反义RNA(antisense RNA)由于它们可以与特异的mRNA序列互补配对,阻断mRNA翻译,能调节基因表达。核酶是具有催化活性的RNA分子或RNA片段。目前在医学研究中已设计了针对病毒的致病基因mRNA的核酶,抑制其蛋白质的生物合成,为基因治疗开辟新的途径,核酶的发现也推动了生物起源的研究。微RNA(microRNA,miRNA)是一种具有茎环结构的非编码RNA,长度一般为20-24个核苷酸,在mRNA翻译过程中起到开关作用,它可以与靶mRNA结合,产生转录后基因沉默作用(post-transcriptional gene silencing,PTGS),在一定条件下能释放,这样mRNA又能翻译蛋白质,由于miRNA的表达具有阶段特异性和组织特异性,它们在基因表达调控和控制个体发育中起重要作用。
五、RNA组
随着基因组研究不断深入,蛋白组学研究逐渐展开,RNA的研究也取得了突破性的进展,发现了许多新的RNA分子,人们逐渐认识到DNA是携带遗传信息分子,蛋白质是执行生物学功能分子,而RNA即是信息分子,又是功能分子。人类基因组研究结果表明,在人类基因组中约有30000~40000个基因,其中与蛋白质生物合成有关的基因只占整个基因组的2%,对不编码蛋白质的98%基因组的功能有待进一步研究,为此20世纪末科学家在提出蛋白质组学后,又提出RNA组学。RNA组是研究细胞的全部RNA基因和RNA的分子结构与功能。目前RNA组的研究尚处在初级阶段,RNA组的研究将在探索生命奥秘中做出巨大贡献。

5、trizol法提取rna原理是什么?

Trizol作用原理:

在匀质化或溶解样品中,Trizol试剂可保持RNA的完整性,同时能破坏细胞及溶解细胞成分。加入氯仿离心后,裂解液分层成水相和有机相。RNA存在于水相中。

水相转移后,RNA通过异丙醇沉淀回收。移去水相后,用乙醇可从中间相沉淀得到DNA,加入异丙醇沉淀可从有机相得到蛋白质。

(5)发夹RNA形成专利扩展资料

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。

1、在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少量核糖,但这些个别的例外并不能以此否定两类核酸组成上的差异。

2、RNA一级结构的概念虽与DNA相同.但其基本结构单位是核糖核苷酸而不是脱氧核糖核苷酸。此外,部分RNA5′端或3′端有特殊的核苷酸序列,而且RNA一级结构中没有DNA那样复杂的顺序组织。

3、绝大多数RNA为单链分子,单链可自身折迭形成发夹(hairpin)样结构而有局部双螺旋结构的特征,这是各种RAN空间结构的共同特征。RNA局部双螺旋结构中碱基互补配对规律是A对U和G对C。由于RNA分子内部不能全面形成碱基配对,故其碱基克分子比A不等于U,G不等于C,不存在DNA碱基比例的 Chargaff规律。

6、转录后的RNA是怎样与DNA模板链分开的?

转录终止的过程其实实质上还是DNA上的核苷酸序列控制的:
提供转录停止信号的DNA序列称为终止子。
大肠杆菌在转录终止时有两类终止子起作用:
一类是不依赖ρ因子的终止子(简单终止子)
一类是依赖ρ因子的终止子
A. 不依赖ρ因子的终止
转录终止区有特殊结构(终止子的序列)。终止区的上游有GC二重对称区,转录的RNA容易形成多个“发卡”结构,转录产物的3’端有多聚尿苷酸序列。这种特殊的二级结构阻止了转录向下游继续推进。 (RNA聚合酶到达终止子的时候暂停。暂停给发夹结构有时间形成, 发夹结构破坏了RNA聚合酶和它的RNA产物之间的作用。富含U-的序列很容易与模板链解离
转录复合物解体,转录终止)

B.依赖ρ因子的终止
新生RNA上有ρ因子的识别位点。它与聚合酶-DNA-RNA复合物结合,向3’端移动,并解开DNA-RNA杂交体,需ATP。( 终止子也含有回文顺序,它编码的RNA片段也形成发夹结构,但需要ρ因子的帮助才能终止RNA的合成。 ρ蛋白以六聚体形式存在,具有DNA-RNA解螺旋酶和ATPase活性,可附着在新合成的RNA上,借助ATP水解提供的能量向RNA聚合酶移动,通过与聚合酶的相互作用终止转录,并使RNA-DNA解链,把产物和聚合酶释放出来。 )

7、构建植物siRNA有哪些表达载体?

构建植物siRNA表达载体:设计编码产生小分子发卡RNA(hairpin:RNA,hpRNA)的DNA序列,编码hpRNA的DNA各链反向互补,中间加上7个碱基的间隙,将其连接到农杆菌双元载体质粒上,构建植物表达载体。

多数的siRNA表达载体依赖三种RNA聚合酶Ⅲ启动子(polⅢ)中的一种,操纵一段小的发夹RNA(short:hairpin:RNA,shRNA)在哺乳动物细胞中的表达。这三类启动子包括人源和鼠源的U6启动子和人H1启动子。之所以采用RNA:polⅢ启动子是由于它可以在哺乳动物细胞中表达更多的小分子RNA,而且它是通过添加一串(3到6个)U来终止转录的。要使用这类载体,需要订购2段编码短发夹RNA序列的DNA单链,退火,克隆到相应载体的polⅢ启动子下游。

由于涉及到克隆,这个过程需要几周甚至数月的时间,同时也需要经过测序以保证克隆的序列是正确的。siRNA表达载体的优点在于可以进行较长期研究——带有抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持续数周甚至更久。

病毒载体也可用于siRNA表达,其优势在于可以直接高效率感染细胞进行基因沉默的研究,避免由于质粒转染效率低而带来的种种不便,而且转染效果更加稳定。最适用于已知一个有效的siRNA序列,需要维持较长时间的基因沉默,不适用于筛选siRNA序列(其实主要是指需要多个克隆和测序等较为费时、繁琐的工作)。

8、生物学为什么发卡结构会导致转录终止呢?

发卡结构会引起RNA聚合酶的构型改变,促进其脱落。

9、mRNA的发夹结构是什么

mRNA是单链线形分子,只有局部区域为双链结构.这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的.

10、图示具有10bp茎和5nt环的rna发卡结构。写出形成此发卡结构的序列。

楼主你好,百度知道用户“黄意诚”很高兴为您解答,DNA是螺旋结构的,不是发夹结构的。希望我的回答能让你满意,如果有问题请继续追问,满意请采纳,您的采纳是我回答知道的动力!
图示,rna,发卡,结构,序列
楼主你好,百度知道用户“黄意诚”很高兴为您解答,DNA是螺旋结构的,不是发夹结构的。希望我的回答能让你满意,如果有问题请继续追问,满意请采纳,您的采纳是我回答知道的动力!

热点内容
我要开店淘宝 发布:2020-09-09 12:06:51 浏览:854
十大相机品牌 发布:2020-08-29 10:57:46 浏览:788
淋浴器十大品牌 发布:2020-08-29 01:52:31 浏览:627
开店宝支付 发布:2020-09-15 10:25:50 浏览:560
技术专利申请 发布:2020-08-27 21:42:43 浏览:545
怎么扫条形码 发布:2020-08-29 10:28:31 浏览:538
怎么保护知识产权 发布:2020-08-29 01:30:26 浏览:535
济南创新谷 发布:2020-09-10 04:19:14 浏览:533
淘宝开店照片要求 发布:2020-09-09 12:08:29 浏览:532
开店美发 发布:2020-09-02 20:04:55 浏览:531