相变材料专利
1、力王新材料相变材料如何做到固固相变的?有什么特殊的工艺吗?
力王新材料的相变材料做到固固相变应该是使用了定形改性的方法。
因为力王相变材料既能按需求做成固液相变,也能按要求做成固固相变,那肯定是用了定形改性的方法,毕竟用固液相变材料一般很难直接使用的,要进行改性处理后才能更易使用。改性的目的是将相变时产生的液体固定,使之不危害周边介质,将不定型类相变材料转变为定形类材料。力王的相变材料做到固固相变就应该是使用了定形改性。
常用的相变材料的定形改性方法(工艺)主要有三种:
1、共混改性
共混改性与高分子材料混合在一起,利用其相变核心物质与载体基质的相融性,熔融后混合在一起而制成成分均匀的相变材料,将相变时产生的液体进行定形改性。
2、接枝改性
接枝改性适合固固和固液类相变材料,具体为将相变材料接枝于聚合物基材上。接枝型PCM相变材料的前提是相变接枝于高聚物间形成化学键合,因此这类PCM多以具有反应性官能团的聚乙二醇作为相变介质,而机体多为具有反应性官能团的纤维素及其繁衍生物。
3、封装改性
封装改性适用于固液相变材料,这类相变材料在使用前必须将其封装起来,以防止相变时产生的液体污染或腐蚀周围介质材料。具体方法有:A吸附于微孔材质中;B包裹于微胶囊中。
力王新材料的相变材料做固固相变应是改性后的产物,至于用哪种方法做相变材料改性,那就需要问其工程师了。其实,只要产品满足我们工程热管控的需求就好,至于用哪种方法改性其实问题都不大。
2、RFT自控相变储能节能材料是一种什么样的材料,怎么使用,是什么状态的产品(液态,固态)跟电有什么关系吗?
RFT自控相变储能节能材料 [专利号:2007102008027]
一、产品概述
RFT自控相变储能节能材料是依据相变储能机理,兼有热熔和热阻性的双项功能,有别于传统保温材料的单一热阻性。传统的建筑外墙外保温体系因不具备热熔性而导致室内温度波动大,因此,传统的建筑保温材料技术不代表节能,相反还带来新的能源浪费,例如,炎热的夏季在太阳底下给人穿大棉袄将是什么感觉,同样,建筑在炎热的夏季由于保温带来室内热量散发不出去,为了散热造成空调能源更大的浪费。
RFT自控相变储能节能材料具有较高热容,在冬季的白天可蓄存由窗户进入室内的太阳辐射热,晚上材料相变向室内释放出蓄存的热量,从而大大节约采暖能耗;在夏季不但可以有效阻止室外热量通过建筑墙体进入室内,同时可以吸收室内的高峰热量,防止室内过热,在夜间室外温度下降以后外围护结构热量又能很快散发出去,保持室内有适宜的温度有效改善室内的热环境,从而降低了空调能耗、减少温室气体排放。
RFT自控相变储能节能材料通过了国家建筑材料工业技术监督中心的成果鉴定,并经由国家建筑材料工业房建材料质量监督检验检测中心检测:“潜热值、干表观密度、压剪粘结强度、抗压强度、线性收缩率、燃烧性能及水蒸气湿流密度等项目符合Q/CYBFT003-2006《 RFT自控相变储能节能材料》标准要求。”“纯相变材料潜热值为240.44J/g,其检测试样厚度38mm,
传热系数达0.56w/(m2·k),当量导热系数为0.027w/(m·k)。”
RFT自控相变储能节能材料的优异性能获得了众多工程质量验证,取得良好声誉,如:港馨住宅小区的建设方房地产开发公司在回访反馈中书面表示:“此材料特点显著、工艺先进、施工快捷、综合造价低,现场材料抽样检测,完全符合国家标准,是理想的保温产品,建议在建筑行业中大力推广此产品。
二、材质特性
利用相变调温机理,通过储能介质的相态变化实现对热能储存。当环境温度低于一定值时,该材料由液态凝结为固态,释放热量;反之由固态熔化为液态,吸收热量,可形成室温相对平衡。
相变材料可收集多余热量,适时平稳释放,梯度值变化小,有效降低损耗量,室温可趋于稳定。
利用相变调温机理,可使电负荷“消峰平谷”充分利用低谷电价,降低用电成本,减少能源浪费,获取可观的社会效益和经济效益。
利用相变调温机理,对建筑分户采暖产生广泛推动作用,可对居住环境室温夏季隔热、冬季保暖起到平衡调节作用。
三、综合优势
双项绝热——应用相变添加剂,产生热熔和热阻性双项功能,有别于传统保温材料的单一热阻性。
防火不燃——经测定为A级不燃材料,使用不受范围限制,符合防火要求。
绿色环保——已测定为无毒、无味、无放射、无腐蚀的环保型产品。
密实憎水——具有憎水功能,水中长久浸泡不松散、不粉化、不变形。有效避免传统保温层吸湿后回软易于墙体脱开之弊病。
高强抗压——料体呈网状结构,与空气中的二氧化碳,水分反应,在表面生成保护层,形成高抗压强度;材料中的基可与墙体形成高渗透统一体,其干态粘结力,湿态粘结保护率均优于同类产品,可满足高层建筑外墙贴面砖的粘结强度要求。
耐候持久——惰性材质,可有效避免环境温差应力及负风压对保温层的撕裂性破坏,体现其粘结牢固性及使用的长久性。
吸声降噪——多层次不相贯穿的中空结构,可减缓震动源和撞击声波传递,有效降噪分贝。用于分户墙、顶棚、地面等部位具有隔声效果。
抑菌防碱——含有纯天然的香 、香醇成分,具有驱虫、除臭、防析碱功能。
施工简便——单组分,现场调料,手工抹置,便捷,也是多种建筑内、外墙等处抹灰理想的替代品。
经济实用——综合造价低,与同类产品比经济实用。
四、适用范围
广泛适用于工业与民用等各类建筑的外墙内、外保温,屋面、分户隔墙、楼梯间、吊顶等需要保温隔热的部位。
3、相变储能材料是新能源材料吗
你好,算是。
相变储能材料将暂时不用的能量储存起来,到需要时再将其释放,从而可以缓解能量供与求之间的矛盾,节约能源,因此受到越来越广泛的重视和深入的研究。介绍了相变材料在太阳能、建筑、纺织行业、农业等工业与民用方面的应用,概括和评述了相变储能复合材料的制备方法厦其研究进展,指出当前存在的问题以厦目前值得深入研究的课题。
随着全球工业的高速发展,自从20世纪70年代出现了能源危机及大量的能源消耗导致的环境污染和温室效应,人们一直在研究高效能源、节能技术、可再生环保型能源、太阳能利用技术等。
相变储能是提高能源利用效率和保护环境的重要技术,也是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式,在太阳能的利用、电力的“移峰填谷”、废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。利用相变材料的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,是近年来能源科学和材料科学领域中一个十分活跃的前沿研究方向。
相变储能材料是指在其物相变化过程中,可以与外界环境进行能量交换(从外界环境吸收热量或者向外界环境放出热量),从而达到控制环境温度和利用能量的目的的材料。与显热储能相比,相变储能具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。
1相变储能材料
20世纪30年代以来,特别是受70年代能源危机的影响,相变储热(LTEs)的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起并得到不断发展。材料科学、太阳能、航天技术、工程热物理、建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为LTEs研究和应用创造了条件。LTES具有储热密度高、储热放热近似等温、过程易控制的特点。潜热储热是有效利用新能源和节能的重要途径。提高储热系统的相变速率、热效率、储热密度和长期稳定型是目前面临的重要课题。研究潜热储热的核心是研究材料的相变传热过程。
2相变储能材料的机理
相变材料从液态向固态转变时,要经历物理状态的变化,在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。
在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时产生了一个宽的温度平台,该温度平台的出现体现了恒温时间的延长,并可与显热和绝缘材料区分开来(绝缘材料只提供热温度变化梯度)。相变材料在热循环时储存或释放显热。
相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。以冰一水的相变过程为例,对相变材料在相变时所吸收的潜热以及普通加热条件下所吸收的热量作一比较:当冰融解时,吸收335J/g的潜热,当水进一步加热.每升高1℃,它只吸收大约4J/g的能量。因此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰一水之外,已知的天然和合成的相变材料超过500种,且这些材料的相变温度和储热能力各不相同。把相变材料与普通建筑材料相结合,还可以形成一种新型的复合储能建筑材料。这种建材兼备普通建材和相变材料两者的优点。
目前,采用的相变材料的潜热达到170J/g左右,而普通建材在温度变化1℃时储存同等热量将需要190倍相变材料的质量。因此,复合相变材料具有普通建材无法比拟的热容,对于房间内的气温稳定及空调系统工况的平稳是非常有利的。
相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸气压低。此外,相变材料还需与建筑材料相容,可被吸收。
3相变储能材料的应用领域
相变储能材料在许多领域具有应用价值,包括太阳能利用、电力调峰、废热利用、跨季节储热和储冷、食物保鲜、建筑隔热保温、电子器件热保护、纺织服装、农业等等。
3.1在太阳能方面的应用
太阳能清洁、无污染,而且取用方便。利用太阳能是解决能源危机的重要途径之一。但是由于到达地球表面的太阳辐射能量密度并不高,而且受地理、昼夜和季节等规律性变化的影响,及阴晴云雨等随机因素的制约,其辐射强度也不断发生变化,而且具有稀薄性、非连续性和不稳定性。所以为了保持供热或供电装置稳定不问断地运行,就需要通过贮热装置把太阳能贮存起来,在太阳能不足时再释放出来,从而满足生产、生活用能连续和稳定供应的需要。一些工业发达的国家昼夜用电存在“谷峰差”,可以利用相变材料在夜间储存能量(电能转化的热能或者冷能),到白天用电高峰时再释放出来使用,缓解电网负荷。
相变储能材料即可满足这一要求。例如美国管道系统公司(Pipe System Inc.)应用CaCl2·6H2O作为相变储能材料制成贮热管,用来贮存太阳能和回收工业中的余热。该公司称:100根长15cm、直径9crn的聚乙烯贮热管就能满足一个家庭所有房间的取暖需要。法国ElFUnion公司和美国的太阳能公司(SOlar Inc.)用NaSO4·10H2O作相变材料来储存太阳能,也都是应用较成功的实例。
3 2在生态建筑业方面的应用
有关资料显示:社会一次能源总消耗量的1/3用于建筑领域。提高建筑领域能源使用效率,降低建筑能耗,对于整个社会节约能源和保护环境都具有显著的经济效益和社会影响。生态建筑是可持续发展的重要手段之一。在生态建筑中,相变储能复合材料可以帮助利用太阳能、季节温差能等可再生能源,有效降低建筑物室内温度波动、缩减各种热能设备、降低能源支出和提供健康舒适的室内环境}可以利用低峰电力、削峰填谷,降低电能消耗,缓解电力紧张。尤其是近年来,随着高层建筑的快速发展,大量采用轻质建筑材料,而轻质建筑材料的热容比较低,不利于平抑室内温度波动。在轻质建筑材料中加入相变材料是解决这一问题的有效方法。
此外,利用相变材料作为室内保温装置已进入实用阶段。在有暖气的室内安装相变材料蓄热器后,当通人暖气时,它会把热贮存起来;当停止送暖气时,它会放出热量,维持室内的温度较为恒定。如果在室内的地板和天花板使用相变材料,由于相变材料的贮热和放热作用,则可将室内温度梯度降低到小于5℃的舒适状态。相变材料还可用在空调节能建筑上,这是一种比较新的应用,通过在墙、屋顶、门窗、地板中“加人”相变材料,可提高空调的使用效率,节约能源,而且室内环境的舒适度也得到了提高。
相变储能复合材料在建筑领域中一个很有前景的应用方式是将相变材料与现存的通用多孔建筑材料复合,即将相变材料储藏在多孔建筑材料中,使这些建筑材料同时具有承重和储能的双重功能,成为结构一功能一体化建筑材料。采用这样的多功能建筑材料,在为建筑增加功能的同时,无需占用额外建筑空间,降低了建筑成本,是一种性价比较高的新型建筑材料,具有明显的市场竞争力。
3.3在服装纺织品方面的应用
根据人体的冷热舒适特点,结合气候条件的差异,选择相变温度适当的相变材料,可以为人体有效地提供一个舒适的微气候环境,提高生活质量和工作效率。美国Kallsas州立大学的shim等研究表明,含相变材料的纺织品能使人体在较长时间内处于舒适状态。在纺织服装中加入相变储能材料可以增强服装的保暖功能,甚至使其具有智能化的内部温度调节功能。把相变材料掺人纺织品后,如果外界环境升高,则相变材料熔化而吸收热能,使得体表温度不随外界环境升高而升高;如果外界环境降低,则相变材料固化而放出热能,使得体表温度不随外界环境降低而降低。
对以严寒气候,宜选择相变温度为18.3~29.4℃的相变材料;对以温暖气候,宜选择相变温度为26.7~37.7℃的相变材料;对以炎热气候.宜选择相变温度为32.2~43.3℃的相变材料。固液相变储能材料在液态时容易流动散失,所以其应用于纺织品时必须采用微胶囊化的形式,即微胶囊相变材料MPcMs。制备微胶囊的物理工艺主要有:喷射烘干、离心流失床或涂层处理。石蜡类烷烃和聚乙二醇是常用于纺织品的相变材料。目前这方面的代表是Outlast公司发明的相变储能纤维——outlast fiber。0utlast fiber是一种采用微胶囊技术生产的特殊纤维,根据使用要求可以具有不同的相变温度。
3.4在农业上的应用
温室在现代农业中有着举足轻重的地位,它在克服恶劣的自然气候、拓展农产品品种和提高农业生产技翠等方面具有重要的价值。温室的核心是控制适宜农作物生长的温度和湿度环境。1987年11月我国在河北省安国县设计建造了一座农用太阳能温室,内部设置的潜热蓄热增温器就是利用相变材料的潜热特性。潜热蓄热增温器储存农用栽培温室中自天过量的太阳能,当夜晚温度下降到定范围后释放出储存的这部分热能,使天之中温室内温度曲线的高峰区有所下降,而低谷区有所上升,昼夜之间的温差变小。这既保证冬季蔬菜等作物的正常生长,叉不需另设常规燃料增温设备,节约了蒸气锅炉、燃油暖风机等基本建设投资和日常燃料的消耗。结果表明,温室冬季夜间最低温度可以提高6℃,增温效果明显。
日本专利报道,用NaSO4·10H2O、NaCO3·10H2O、CH3COONa·3H2O作相变材料,用硼砂作过冷抑制剂,用交联聚丙烯酸钠作分相防止剂,制成在20℃相变的储能相变材料。该材料可用于园艺温室的保温。
在农业上,最先采用的相变材料是CaCl·6H2O,随后又尝试了NaSO4·10H2O、石蜡等。研究结果表明:相变材料不仅能为温室储藏能量,还具有自动调节温室内湿度的功能,能够减少温室的运行费用和降低能耗。
4相变储能复合材料的研究现状
单一的相变材料存在很多缺点,如绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀,储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本;为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。因此,相变材料通常是由多组分构成的,包括主储剂和相变点调整剂、防过冷剂、防相分离剂和相变促进剂组分。有机物相变材料则因相变潜热低,易挥发、易燃烧、价格昂贵,特别是其热导率较低、相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如铜粉、铝粉或石墨等作为填充物以提高热导率,或采用翅片管换热器依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。
近年来,为了克服单一相变储能材料的缺点,更好地发挥其优点,复合相变材料应运而生。它既能有效克服单一的无机物或有机物相变材料存在的缺点,又可以改善相变材料的应用效果,拓展其应用范围。目前相变储能材料的复合方法有以下几种。
4.1胶囊型相变材料
为了解决相变材料在发生固一液相变后液相的流动泄漏问题,特别是对于无机水合盐类相变材料还存在的腐蚀性问题,人们设想将相变材料封闭在球形的胶囊中,制成胶囊型复合相变材料来改善应用性能。
其中,溶胶一凝胶法(Sol—gel)就是近年来发展比较迅速的一种。溶胶一凝胶工艺是一种独特的材料合成方法,它是将前驱体溶于水或有机溶剂中形成均质溶液,然后通过溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶来制备纳米复合材料。它与传统共混方法相比较具有一些独特的优势:①反应用低粘度的溶液作为原料,无机一有机分子之间混合相当均匀,所制备的材料也相当均匀,这对控制材料的物理性能与化学性能至关重要;②可以通过严格控制产物的组成,实行分子设计和剪裁;③工艺过程温度低,易操作;④制备的材料纯度高。
林怡辉等采用溶胶—凝胶法,以二氧化硅作母材、有机酸作相变材料,合成复合相变材料。二氧化硅是理想的多孔母材,能支持细小而分散的相变材料,加入适合的相变材料后,能增进传热、传质,其化学稳定和热稳定性好。有机酸作相变材料克服了无机材料易腐蚀、存在过冷的缺点,而且具有相变潜热大、化学性质稳定的优点。
Lee Hyoen Kook研究出一种球形储热胶囊。其制备方法如下:先将无机水合盐类相变材料(如三水乙酸钠)与一定量的成核剂和增稠剂混合均匀后,制成直径为0.1~3mm的球体作为核,然后再在球形相变材料核的外表面涂覆1层憎水性的蜡膜以及1~3层聚合物膜,最后得到直径在0.3~10mm之间的胶囊型相变材料。
采用胶囊化技术制备胶囊型复合相变材料能有效解决相变材料的泄漏、相分离以及腐蚀性等问题,但胶囊体的材料大都采用热导率较低的高分子物质,从而降低了相变材料的储热密度和热性能。此外,寻求工艺简单、成本低以及便于工业化生产的胶囊化工艺也是需要解决的难题。
4.2与高分子材料复合制备定形相变材料
为了克服传统的相变材料在实际应用中需要加以封装或使用专门容器以防止其泄漏的缺陷,近年来,出现了将有机相变材料与高分子材料进行复合,制备出在发生相变前后均呈固态而保持形体不变的定形相变材料。
其中一种制备工艺是将相变材料(如石蜡)与高分子物质(如聚乙烯)按一定比例在热炼机上进行加热共混。肖敏等将石蜡与一热塑性体苯乙烯丁二烯苯乙烯三嵌段共聚物(sBs)复合,制各了在石蜡熔融态下仍能保持形状稳定的复合相变材料。复合相变材料保持了纯石蜡的相变特性,其相变热焓可高达纯石蜡的80%。复合相变材料的热传导性比纯石蜡好,因此其放热速率比纯石蜡快,但由于sBs的引人,其对流传热作用削弱,所眦蓄热速率比纯石蜡慢。在复合相变材料中加入导热填料膨胀石墨后,其热传导性进一步提高,以传导传热为主的放热过程更快,放热速率比纯石蜡提高了1.5倍;而在以对
流传热为主的蓄热过程中,由于热传导的加强效应与热对流减弱效应相互抵消,保持了原来纯石蜡的平均蓄热速率。
这样既充分发挥了定形固液相变材料的优点:无需容器盛装,可直接加工成型,不会发生过冷现象,使用安全方便;也克服了固一液相变材料明显的缺陷:在相变介质中加入热导率较低的聚合物载体后,导致本来热导率就不高的有机相变材料的热导率更低了,并且还造成整个材料蓄热能力的下降。
4.3利用毛细管作用将相变材料吸附到多孔基质中
利用具有大比表面积微孔结构的无机物作为支撑材料,通过微孔的毛细作用力将液态的有机物或无机物相变储热材料(高于相变温度条件下)吸人到微孔内,形成有机/无机或无机/有机复合相变储热材料。在这种复台相变储热材料中,当有机或无机相变储热材料在微孔内发生固一液相变时,由于毛细管吸附力的作用,液态的相变储热材料很难从微孔中溢出。
多孔介质种类繁多,具有变化丰富的孔空间,是相变物质理想的储藏介质。可供选择的多孔介质包括石膏、膨胀粘土、膨胀珍珠岩、膨胀页岩、多孔混凝土等。采用多孔介质作为相变物质的封装材料可使复合材料具有结构功能一体化的优点,在应用上可节约空间,具有很好的经济性。多孔介质内部的孔隙非常细小,可以借助毛细管效应提高相变物质在多孔介质中的储藏可靠性。多孔介质还将相变物质分散为细小的个体,有效提高其相变过程的换热效率。
5相变储能材料存在的问题和应用展望
5.1存在的问题
我国现阶段相变储能材料的研究和应用方面仍然存在以下一些问题。
(1)相变储能材料的耐久性问题。这个问题主要分为三类。首先,相变材料在循环相变过程中热物理性质的退化。其次,相变材料从基体材料中泄露出来,表现为在材料表面结霜。另外,相变材料对基体材料的作用,相变材料相变过程中产生的应力使得基体材料容易破坏。
(2)相变储能材料的经济性问题。这也是制约其广泛应用于建筑节能领域的障碍,表现为各种相变储能材料及相变储能复合材料价格较高,导致单位热能的储存费用上升,失去了与其他储热方法的比较优势。
(3)相变储能材料的储能性能问题。储能性能有待更进一步地提高。特别是对于相变储能复合材料来说,为了使储能体更加小巧和轻便,要求相变储能复合材料具有更高的储能性能,目前的槽变储能复合材料的储能密度普遍小于120J/g。有学者预测,通过增加相变物质在复合材料中的含量和选择相变焓更高的相变物质,在未来数年内,将有可能将相变储能复合材料的储能密度提高到150~200J/g。
5.2应用展望
相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变储能材料主要应用在家庭采暖系统中,与水合盐相比,具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年)}把它们注入纺织物,可制成保温性能好、重量轻的服装}可用于制作保温时间比普通陶瓷杯长的保温杯}含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空航天器材、军事侦察、日常生活用品等方面具有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:
(1)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义。
(2)开发复合相变储热材料是克服单一无机或有机相变材料不足、提高其应用性能的有效途径。
(3)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一。
(4)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显著提高系统效率,维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义。
(5)进一步关注高温储热和空调储冷。美国NAsA Lewis研究中心利用高温相变材料成功地实现了世界上第一套空间太阳能热动力发电系统2kw电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源解决方案之一,必将极大地推动高温相变储热技术的发展。另外.低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段。
(6)纳米复合材料领域的不断发展为制备高性能复合相变储热材料提供了很好的机遇。纳米材料不仅存在纳米尺寸效应,而且比表面效应大,界面相互作用强。利用纳米材料的特点制备新型高性能纳米复合相变储热材料是制备高性能复合相变材料的新途径。
4、力王新材料PCM相变材料是其专利产品吗?
力王新材料PCM相变材料是有专利发明的产品;
在国家知识产权局能查询得到,如:
申请公布号:CN110294895A就是其中一个
力王新材料的PCM相变材料方面的专利,目前已公布的发明专利有3个;
5、韩晓东的发明专利:
1)韩晓东,张跃飞,张泽,一种热双金属片驱动的透射电子显微镜载网,
2)韩晓东,张跃飞,张泽,单根纳米线原位力学性能测试和结构分析的方法及其装置
3)韩晓东,岳永海,张跃飞,张泽,一种纳米材料原位结构性能测试的透射电镜载片
4)韩晓东,岳永海,郑坤,张跃飞,张泽,透射电镜用纳米材料应力测试载网
5)韩晓东,岳永海,张跃飞,张泽,低维材料应力状态下性能测试装置
6)韩晓东,岳永海,郑坤,张跃飞,张泽,压电陶瓷片驱动的扫描电镜中纳米材料拉伸装置
7) 韩晓东,成岩,王珂,张泽,宋志棠,刘波,张挺,封松林,用于相变存储
器的SiSbTe 系列相变薄膜材料
8)韩晓东,张跃飞,毛圣成,张 泽 扫描电镜电子背散射衍射原位拉伸装置及测量的方法
9) 韩晓东,郑坤,张泽,一种透射电镜中纳米线原位拉伸下力电性能测试装置
10)韩晓东,郑坤,张泽,透射电镜中纳米线原位压缩下力电性能测试装置
11) 韩晓东,张跃飞,张泽,扫描电镜中纳米线原位拉伸装置及方法
12)张泽,王珂,刘攀,韩晓东,一种基于相变材料的透射电镜电学测量载网
6、国家发明专利证书专利号zl200410080574.0 相变储能材料的制备方法
以下是查询结果,请确认。
7、相变材料在国内外发展情况?国内有好的品牌吗
国内相变新材料与国外的相变材料差距在逐步的缩小,国内相变材料应用也逐步成熟。国内好的相变材料如力王新材料的相变材料已经在手机平板数码电子产品和动力电池上普及应用,算是不错的热管理材料。
国内的相变材料品牌其实不少,但应用都比较单一,如建筑建材、制冷保温物流、特种服装等等。相变材料价格也还比较高,一般的产品是无法普及使用相变材料的,即使像力王新材料这样的好品牌的相变材料普及至手机平板数码产品或保温杯碗等日常产品,但其目前的价格也还是偏贵的。
8、什么是相变材料
相变材料(PCM - Phase Change Material)是指随温度变化而改变物理性质并能提供潜热的物质。转变物理性质的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。这种材料一旦在人类生活被广泛应用,将成为节能环保的最佳绿色环保载体,在我国已经列为国家级研发利用序列。
相变材料可分为有机(Organic)和无机(Inorganic) 相变材料。亦可分为水合(Hydrated)相变材料和蜡质(Paraffin Wax)相变材料。
我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长。这是相变材料的一个最典型的例子。
从以上的例子可看出,相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。
有机相变材料和无机相变材料的最大区别在于运用到建筑材料等方面耐久性和防火性的差异,后者多优于前者。
参考链接:相变材料_网络
http://ke.baidu.com/link?url=ICYOk_1pcMwXjCQq_nvG5lx21o8NTX-_VmpOy-ATq
9、FTC自调温相变节能材料套哪个定额
FTC自调温相变节能材料目前没有可参照的定额。
FTC自调温相变保温材料,是属于新兴的环保节能材料,且属于A级不燃材料。FTC材料通过建设部科技成果鉴定,基本满足建筑节能65%的要求。
FTC自调温相变节能材料是利用植物临界萃取、真空冷冻析层、蒸馏、皂化等新工艺复合而成,是根据不同温度相变点调节室温的纯天然原创科技新材料。它利用相变调温机理,通过蓄能介质的相态变化实现对热能储存,改善室内热循环质量。当环境温度低于一定值时,相变材料由液态凝结为固态,释放热量;当环境温度高于一定值时,相变材料由固态熔化为液态,吸收热量。就这样相变材料在外界温度发生变化时,收集多余热量,适时平稳释放,梯度变化小,有效降低损耗量,让室温趋于稳定。相变材料还可利用相变调温机理,使电负荷“削峰平谷”,充分利用低谷电价,降低住户用能成本,减少能源浪费。相变材料对建筑分户采暖,具有广泛推动作用,特别是对首层、顶层、边角处居住环境的室温,夏季隔热、冬季保温均可起到平衡作用。
10、力王新材料的相变材料目前有哪些应用?
基于相变材料的性能不同,其应用的行业也不同,目前所了解的力王新材料的相变材料应用行业涉及:
新能源汽车:电池控温材料
无人机:电池控温材料
高端电动工具:电池包控温、设备降温
移动通信:5G通讯基站散热降温、手机、平板等移动终端散热降温
电脑硬件:PC桌面电脑、笔记本电脑、工作站
电子设备:精密测试电子设备
服装行业:降温服
日常用品:降温杯、恒温杯
智能设备:3D打印、AI机器人
恒温包装:恒温配送箱、外卖箱
目前力王相变材料应用范围扔在不断的拓展,或许在不久的将来,其研发出来的相变材料性能更好,应用范围更广都是有可能的。
除以上力王相变材料的行业应用外,另外相变材料也常见应用的行业还有:
航天领域:宇航服、航天器
物流运输:冷链物流、恒温物流
家居建材:降温涂料、保温材料、地暖材料
交通工程:防雪道路基材
储能电厂:热电厂、储能调峰电厂
其它相变材料的应用也不断的有人在尝试创新,或许在不就的将来,人们便发现越来越多的行业或跟我们息息相关的物品在使用相变材料。