飞灰再循环专利
1、如何降低循环流化床锅炉的飞灰含碳量?
锅炉床温的影响,提高锅炉床温,能够有效降低飞灰含碳量;相反,锅炉床温低,飞灰含碳量自然就高。当然尽量提高锅炉的运行负荷百分比,也能令锅炉床温升高,一次通过燃烧室燃烧的粒子(分离器收集不下来的粒子)燃尽度自然也较高,飞灰含碳量就低;相反,飞灰含碳量就高。过量空气系数的影响。调整好一二次风的配比,有效地降低飞灰、灰渣含碳量,是保证锅炉经济燃烧的主要手段。运行中适当提高过量空气系数,增加燃烧区的氧浓度,有助于提高燃烧效率。入炉煤的粒径和水分的影响:颗粒过大,一方面床层流化不好,另一方面,碳粒总表面积减少,煤粒的扩散阻力大,导致反应面积小,延长了颗粒燃尽的时间,颗粒中心的碳粒无法燃尽而出现黑芯,降低了燃烧效率,同时造成循环灰量不足,稀相区燃烧不充分,出力下降。另外,大块沉积,流化不畅,局部结焦的可能性增大,排渣困难。颗粒过小,床层膨胀高,易燃烧,但是易造成烟气夹带,不能被分离器捕捉分离而逃逸出去的细颗粒多,对燃尽不利,飞灰含碳量高。颗粒太小,由于煤粉在炉内停留时间过短,燃不尽,飞灰含碳量就大。分离器分离效率的影响:分离器分离效率高,切割粒径小,飞灰含碳量低;相反,分离器分离效率低,切割粒径大,飞灰含碳量高。除尘灰再循环燃烧的影响对难燃尽的无烟煤,采取分离灰循环燃烧之后,飞灰含碳量仍比较高。为了进一步降低飞灰含碳量,一个比较有效的措施是采用除尘灰再循环燃烧。
2、电厂锅炉烟风道系统的停止步骤
正常停炉操作:
⑴
逐渐减少煤量和风量,将负荷降至50%,保持正常床温。
⑵
负荷降至30%时,给水切旁路运行,停止连排。
⑶
过热汽温、再热汽温调整切手动,视情况关闭减温水截止门。
⑷
维持汽包正常水位,必要时,将汽包水位切换到手动方式。
⑸
负荷降至30%时,联系汽机投I、II级旁路。
⑹
床温降至760℃前,投入床上启动燃烧器,床上启动燃烧器投入前应先停布袋除尘,停飞灰再循环系统。
⑺
减少给煤量至最小值,停运石灰石系统,停运给煤机。
⑻
锥形阀切至手动。(必须保证冷却水正常)
⑼
床温降到450℃时,停止床上启动燃烧器,锅炉熄火,关闭各燃油角阀手动门。
⑽
锅炉吹扫5min,当床温降至400℃时,若不需快速冷却,可停风机。
⑾
缓慢关闭一次、二次风机入口挡板,停一、二次风机。
⑿
确认冷渣器达停运条件,停运冷渣器,停冷却水泵,停冷渣器流化风机,停排渣系统。
⒀
关闭引风机入口挡板,停引风机,60s后,停高压流化风机。
⒁
严密关闭各风门挡板,使机组进入备用状态。
3、循环流化床锅炉停电应急预案,
流化床锅炉运行事故应急处理预案
一 .超温结焦的处理
(一)事故原因:当流化床锅炉的燃烧温度达到灰的熔点温度时,流化床、返料器等处就会产生灰渣结焦现象,致使锅炉停止运行。
(二)急救措施、解决方案:当流化床温度上升较快,有超温的趋势时,应立即停止给煤,大幅度增加一次风量以降低床温。如果给煤自动控制时,应将自动改为手动,床温正常以后再恢复自动。当床温稳定以后,减少一次风量,逐步增大给煤量,恢复正常燃烧。同时密切注意风室压力、床层压力及炉膛出口差压值的变化,如压力值下降或存在较强烈的波动现象,应考虑床料是否有局部结焦现象,当床温稳定后,压炉检查流化床及近料器,确认无焦,或清除焦块后,再重新投入运行。如床温、床压均正常,应注意适当排灰、排渣,以检查灰渣排放是否正常,如排灰、排渣不正常,也应采取压炉措施检查,是
否结焦,并查明排灰排渣不正常的原因。
(三)注意事项:在压炉检查时,应注意检查分离器及返料器、返料斜管是否存在结焦和堵塞。切不可在已发现有异常情况时,强行运行,以防扩大事故,增加处理的难度。
二. 低温熄火的处理
(一)事故原因:当流化床燃烧风煤比不当,给煤量不足或给煤设备发生故障断煤,床温下降,低于燃烧的正常温度时,会导致熄火事故。
(二)急救措施、解决方案:当床温下降较快且幅度较大时,应立即检查是否断煤、卡斗,并及时调整给煤量,减少一次风量,直至最小运行风量,但不宜小于相应床料厚度的冷态临界风量。调整炉膛微负压运行。必要时,可关闭返料流化风,停止返料,关闭二次风门,停止输送二次风,待炉温稳定和回升时,再逐步恢复返料量、二次风。如床温低于650℃以下再继续下降较快时应停止给煤,停止一次风,压炉闷火,利用炉墙温度加热床料。闷炉时间一般为15min左右。必要时,可打开炉门,查看床料火色,呈红色,可关闭炉门,直接启动,恢复锅炉正常运行。检查时,注意下部底料温度,如果床料较厚时,可排放部分底料,也可从炉门处往外扒出底料表面温度较低的一层炉料,再启动锅炉。启动时,注意一次风不宜提升过快,一般启动风机投入给煤时,给煤量不宜过大,注意炉温是否回升,如回升,可逐步增加风量到临界流化风量稳定一段时间,待床温快速回升时,再逐步提升一次风,并调整给煤量。给煤量应远小于正常运行煤量,以免给煤量过大,一旦床温正常,燃烧正常,床内过量的可燃物大量燃烧放热,床温无法控制,反过来又出现超温现象。但床温恢复到800℃以上,一次风量恢复到正常运行风量时,可控制好床温,逐步投入二次和返料循环燃烧,使锅炉完全正常运行。如果检查底料温度过低,床料无火色,可开启点火油系统重新加热底料,如同冷态升炉一样重新点火升炉。
(三)注意事项:在处理熄火故障时,应注意床温变化,控制好给煤量,不能追煤过多,不要勉强拖延,果断根据实情压炉闷火,床料过厚量,适当排放冷渣冷灰,重新投入返料时,将冷灰排完后再投入,注意调整炉膛负压。
三.返料器结焦、不返料的处理
(一)事故原因:循环流化床锅炉运行中,返料器结焦不返料,会造成锅炉无法正常运行。
(二)急救措施、解决方案:当返料器出现超温、不返料的异常现象时,应调整燃烧,及时停炉压火,打开返料器检查门进行检查。如结焦,应及时清除,并检查分离器、返料斜管是否结焦并进行清除,同时,分析结焦的原因,防止重复发生。如果锅炉流化床正常,没有超温,也没有大量排灰,排渣现象,返料器内也无其他杂物,如耐火砖、混凝土块等,应注意检查返料器流化风室及放灰管、返料风的送风系统。如放灰管破裂,应修复;排灰口漏风严重,应用耐火混凝土密实,消除一切影响流化的因素。如返料器内既不结焦,也无其他异常情况,应考虑返料器温度计是否损坏,更换损坏的热电偶或导线。
(三)注意事项:应注意检查返料器是否漏风,是否流化风量调整过大,使返料风返窜至分离器,造成分离器分离效果降低,使循环灰浓度下降。
四.分离器结焦、堵灰、分离效果差的处理
(一)事故原因:返料器工作正常时,循环灰在分离器内是不滞留的,所以,分离器一般不会积灰和结焦。但如果返料不正常,或者分离器耐火内衬损坏剥离,造成返料器、分离器料腿堵料时,分离器便会发生堵灰和结焦。
(二)急救措施、解决方案:如果返料器温度正常,排灰正常,灰浓度过低,应注意检查燃料是否颗粒过细,如果颗粒过细,应注意降低一次风量运行,尽量养厚床料,如还是不行,可适当加强飞灰再循环量,待有机会时,再停炉检查分离器是否损坏。如果有条件时,可以改变燃料质量,掺烧其他燃料。一旦返料器呈现不返料、排灰不正常,或温度下降等现象时,应及时采取压火停炉措施,检查返料器和分离器,以便及时消除故障,防止分离器严重堵灰或结焦,给处理增加难度。一般返料器只要停止返料几分钟,循环灰便有可能由料腿堵上分离器,一旦堵上去,而且又结焦时,很难处理。只要堵灰不严重,处理及时,只要压火几分钟即可排除故障。
(三)注意事项:如果分离器掉内衬,应注意清除干净,尤其是升炉前的冷状态,必须将那些将要掉、但还不掉的内衬及混凝土块,用外力将其捅掉,以免运行时,受热后因应力作用而松动掉落,影响正常运行。对于损坏剥落,形成裂纹的现象应及时修复,以免影响分离效果。
五.循环灰浓度过高的处理
(一)事故原因:循环流化床锅炉运行中,会因循环灰浓度过高,通风阻力过大,流化质量遭到破坏而塌床停炉。循环流化床锅炉的出力与炉膛出口处差压值的控制范围存在密切的联系。因此,在正常运行中,当供热负荷较重,运行床料较厚,悬浮段稀相区差压值较大时,一旦出现风室压力大幅波动现象,即说明循环灰流量过高,床内极有可能发生流化质量恶化的腾涌现象。
(二)急救措施、解决方案:这时,应果断采取排放循环灰及冷渣,适当降低循环物料量及床料,改善流化质量,并应适当减少供热负荷,稳定锅炉运行工况。 (三)注意事项:在排灰、排渣时,不宜在短时间大量排放,以防床温控制不住。如果床压剧烈波动,应立即停止给煤,压火停炉。适当排放冷渣,同时排放循环灰,待炉内物料量控制在适当的厚度后再重新启动锅炉,恢复正常运行。
六. 循环灰浓度过低的处理
(一)事故原因:循环流化床锅炉运行时,灰浓度过低,会降低稀相区的燃烧份额,降低炉内,降低炉内水冷壁的传热,影响锅炉出力。严重时,养不起床料,使密相区物料量越来越少,颗粒越来越粗,流化质量越来越差,严重时会造成薄料层局部高温结焦。
(二)急救措施、解决方案:当锅炉床料提升不起灰浓度过低时,应注意调整风量,维持一次风最小运行风量,适当增大二次风量。可在给煤机前给煤中适当掺烧冷料,以补充床料,也可以利用压炉的机会由炉门往炉内投入冷料,适当加厚床料。
(三)注意事项:注意改善原煤质量,增加含灰和矸石成分稍多的燃料,使用混合燃料,同时注意检查返料器,消除漏风,关小返料风。
4、关于循环流化床锅炉燃烧效率分析的材料谁有?谢谢!
近年来我国推出的流化床锅炉结构类型已有若干种,从受热面布置来说,有密相床带埋管的,有不带埋管的;流化速度有的低至3-4米/秒,有的高至5-6米/秒;分离器的种类更多,如高温旋风分离器;中温旋风分离器、卧式旋风分离器、平面流百叶窗、槽形钢分离器等型式,都称之为循环流化床锅炉。但从机理看,是否属于CFBB还有待商椎。
众所周知,流化床锅炉分为两大类:鼓泡流化床锅炉(BFBB)和循环流化床锅炉(CF-BB)。到目前为止,二者之间尚无明确而权威的分类法,有人主张以流化速度来分类,但从气固两相动力学来看,风速相对于颗粒粒径、密度才有意义,还有人主张以密相区是鼓泡还是湍动床或快速来区分,但锅炉使用的是宽筛力燃料,以煤灰为床料的锅炉往密相床是鼓床,故此分法仍欠全面。还有人以是否有灰的循环为标准等等,都有些顾此失彼。以作者之见,我们不妨从燃烧的机理上来分。鼓泡床锅炉的燃烧主要发生在炉膛下部的密相区,如我国编制的《工业锅炉技术手册(第二册)》推荐,对于一般的矸石烟煤、贫煤和无烟煤密相区份额高达75%-95%,燃烧需要的空气也主要以一次风送入床层.循环流化锅炉的一次风份额一般为50%-60%。密相床的燃烧份额受流化速度、燃料粒径及性质、床层高度、床温等影响在上述数值的上下波动。其余的燃料则在炉膛上部的稀相区悬浮燃烧,所以在燃烧的机理上,BFBB接近于层燃炉,而CFBB更接近于室燃炉,二者在这一方面存在着极大的差异,所以以此划分似乎更为合理。
鼓泡流化床锅炉密相床的燃烧份额大,需布置埋管受热面以吸收燃烧释放。埋管的传热系数高达220-270KW/MC比CFBB炉膛受热面的100-500kw/m2℃离得多尽管BFBB稀相区内的传热系数比要低,但因在稀相层内的吸热量所占份额较小,总的来说,对于容量较小的锅炉BFBB结构受热面的钢耗量要少小些,BFBB的燃烧主要在相床给煤的平均粒径偏大,煤破碎设备较为简单,电耗也底流化速度低,细煤粒在悬浮断停留时间长,炉膛也做的低。虽埋管有磨损,但如防磨损失处理得好,一般横埋管可用五年,竖埋管可用…….采用尾部飞灰再循环,BFBB的燃烧效率可达97%,如在炉膛出口安装分离器实现热态飞灰再循环,则可高达98-99%,但此时装设分离器的目的主要是为了提高燃烧效率而不是象CFBB主要上为了改变炉内的燃烧传热机理。
CFBB的截面热负荷是BFBB的2-3倍(从上至下加起来的热负荷,而不是一层),利于大型化,炉膛内温度均匀,大气污染物排放低,燃烧效率高(可达99%以上)是在BFBB技术上的进步,具有更优越的性能,但因分离器不能捕集到细小煤粒,就需要较高炉膛,对煤的破碎粒度及操作控制等都要求较高,投资大且技术复杂,所以CFBB炉型对中小容量锅炉并无明显优势,因而国外一些研究者认为,BFBB适用于50t/h以下容量,CFBB适用于220t/h以上容量,在50-220t/h容量范围内二者共存。
我国在过去许多年中,建造了近3000台沸腾炉(即BFBB)虽然其在燃烧劣质煤方面发挥了极大的作用,但上于一直在低水平上运行,飞灰量大,含炭高,锅炉效率低下,再加上除尘方面投资不足,烟尘治理没得到很好解决,致使沸腾炉有点声名不佳。CFBB出现之后,人们便纷纷打出循环流化床锅炉的牌子,推出了不少炉型,如清华大推出的低携带率循环床锅炉,哈工大与北锅开发的带埋管和槽型分离器的循环床锅炉等,实际上都是BFBB。但它们是改进了的沸腾炉,把沸腾炉技术提高到了较高的水平,这些炉型在工业锅炉和热电联供锅炉范围内有着极强的生命力,所以我们应当为BFBB的新成绩欢呼,正其位,恢复其名誉,并在一定的锅炉容量范围内发展这种BFBB。
我国的BFBB数量居世界之首,有着长期的运行经验,故改进的BFBB技术的成熟程度较高。而CFBB技术尚有待完善和提高,在众多炉型的选择上,首先应分清其属于BFBB还是CFBB,然后再考虑其它技术指标及可靠程度,本文以下的章节则主要是针对CFBB而言,对一些二者通用的技术,则皆适用。
流化速度
流化速度对CFBB最直接最主要的影响是其对循环物料扬折夹带的作用。随着V的增加,夹带量以增长的速度快速增加.早期国外的CFBB如Lurgi技术等,V高达8-12M/S,随着高流速带来磨损及能耗等问题,逐渐降至目前的6M/S左右,我国CFBB技术开发较晚,初期因担心上述问题,有些炉子曾设计的V较低(4-5M/S)运行中发现循环物料不足,将风速提高后,状况大为改观,现也提高到5.5-6M/S,与国外炉子比较接近。
煤的粒径与煤质分折
CFBB的流化速度很高,床料粒径大亦可流化起来,如文献中可见,入炉煤粒范围可达0-12,0-20,0-25MM等,随厂家和煤种不同而给出的允许范围不同,比BFBB允许燃料粒度范围要宽,最大允许粒径也大。但根据我们的研究和国外的一些文献报导,实际上CFBB使用的燃料平均粒径比BFBB的要小得多。BFBB的平均燃料粒径达1-2MM,CFBB的平均粒径只有300-400UM,严格地说,CFBB要求燃料中有较大比例的终端速度小于流化速度的细颗粒,以使得这些细煤粒一旦入炉后能被吹到悬浮段空间去燃烧,并且同时起到增加循环物料量的作用。燃料粒径的影响主要表现在其对密相床燃烧份额和物料平衡的影响上,燃料细粒多,密相床燃烧份额小,循环物料量大。
CFBB入炉燃料粒度分布的确定与选择,与流化速度的选取有关,可见粒径对二者的影响是很大的,选定的粒度分布,应能保证在已确定的流化速度条件下,有足够细煤粒吹入悬浮段,以保证上部的燃烧份额,以及能形成足够的床料,保持物料的平衡。
影响入炉燃料粒度的主要因素还有煤的热爆性质和挥发份含量,热爆强的煤就可选择粒度较大,大煤粒入炉后受热爆裂可形成份额增加,此时入炉煤的粒度分布可放宽。
一、 二次风配比
把燃烧需要的空气分成一、二次风从不同位置分别送入流化床燃烧室,在密相床内形成还原性气氛,实现分段燃烧,可大大降低热力型NOX的形成,这是CFBB的主要优点之一,但分成一、二次风的目的还不仅仅如此,一次风比(一次风量占总风量的份额)直接决定着密相床的燃烧份额,同样的条件下,一次风比大,必然导致高的密相床燃烧份额,此时就要求有较多的温度低的循环物料返回密相床,带走燃烧释放热量,以维持密相床温度,如循环物料量不够,就会导致流化床温度过高,无法多加煤,负荷上不去,这一用来冷却床层的物料可能来自分离器搜集下来的经过冷却的循环灰,或来自沿炉膛周围膜式壁落下的循环灰,灰在下落过程中与膜式壁接触受到冷却。
从密相床的燃烧和热平衡上看,一次风比越小,对循环灰的物料平衡要求越低,但实际上一次风比的选取还受燃料粒度及性质等因素的制约,一次风比小,要求燃料中不能被吹起进入悬浮段燃烧的大颗粒比例也要小,否则大颗粒因得不到充足的氧气燃烧不完全,排放的床灰中含炭量极高,一次风比一般选择在50%左右,对无烟煤则可达60%以上。
二次风一般在密相床的上面喷入炉膛,一是补充燃烧需要的空气,再者可起到扰动作用,加强气固两相的混合,CFBB炉膛的下部多设计成渐缩型,二次风可分成几股风从不同高度送入,以保持炉内烟气流速的相对均匀。二次风口的位置亦有很大影响,如设置在密相床上面过渡区灰浓度较大的地方,就可将较多的碳粒和物料吹入空间,增大上部的燃料份额和物料浓度。
分离器
分离器对CFBB的重要作用是任何人都不会怀疑的,没有分离器也就没有CFBB。正因为如此,国内外都把相当多的注意力放到了分离器的研究开上。分离器的型式与结构形成了CFBB流派之间的区别标志之一。
CFBB分离器的主要性能指标仍是分离效率,它必须具有足够高的效率,一是提供足够的循环物料,二是收集细碳粒送回炉膛再燃烧,提高燃烧效率。CFBB循环物料的主体是200-300WM的颗粒,设计的分离器不但对此粒径有极高的分离效率(>99%),d50还应尽量小于提高碳的燃烬率。CFBB飞灰含碳量分折发现,含碳量在某一料径时达到峰值,随后又下降,这一峰值对应粒径与分离器的效率是密切相关的。
目前CFBB使用的分离器主要分为两大数,旋风分离器和惯性分离器,一般说来,旋风分离器效率较高,体积大,而惯性类分离器效率稍为逊色,但尺寸小,使锅炉结构较为紧凑。
在使用的条件上,分离器又可分为两大类,高温分离和中温分离,从对锅炉性能的影响上看,高温分离较为优越,原因是CFBB炉膛内的固体物料浓度较高,造成炉内混合较差,CO浓度较高,高温分离器内的二次燃烧可降低CO浓度,二次燃烧造成的升温有利于N2O的还原,降低N2O排放浓度。
在分离器选取上还应考虑到锅炉的容量范围,作技术经济的比较,如小型工业炉选用旋风分离器,考虑到旋风筒和料腿都需要有一定的高度,与之相匹配,炉膛也必须足够高,否则压低旋风筒及料腿的高度,势必影响其性能。此时应作出技术经济的综合分折。
回灰装置
CFBB灰循环系统中的回灰控制装置除少数为机械阀(如Luirgl的锥形阀)外,一般都采用排机械阀,如J型阀、L型阀、V型阀等,非机械阀没有活动部件,阀的开启与关闭是由给风控制的,其优越性不言而明。
非机械阀分为自平衡的和可调的两大类,J阀、V阀、LOOP seal seal port 等均属于自平衡式的,即流出量根据进入量自动调节,阀本身调流量的功能较弱,L-阀是调节型的,即可根据需要调节流量大小,作者从自己的实践中体会到,L阀运行中的最大问题是阀垂直段中料位的测量问题,因垂直段中料位太低,松动风就可能不是携带灰从水平段流出,而是从垂直段向上吹,既起不到阀的密封作用,还有可能导致结焦,这一问题应给与注意。
在非机械阀的设计中,一是注意选择合适的灰流截面,二是若回灰是高温灰,还应计算阀内的热平衡即松动风中的氧与灰中的碳接触而燃烧,释放的热量部分转化成热烟气的焓,其余的热量则加热循环灰,变为灰的显热。应控制灰的温升,防止灰温过高而结焦,这也是近年来国外发展水冷料脚的部分原因。
受热面磨损
BFBB密相床内布置有埋管受热面,受处于流化状态的床料的冲刷,金属表面一直在经受着一定程度的磨损。BFBB的磨损主要集中发生在过埋管部位,CFBB密相床内不布置埋管爱热面,磨损问题也并未因此而解决,设计时考虑稍有不周,在炉膛和灰系统的任何部位都有可能发生严重磨损。
在机理上,金属的磨损可分为两类:一是金属表面在固体颗料的冲刷下,因磨擦而导致的金属部件的逐渐失重,另一类是在金属表面形成一层氧化膜,膜的硬度很高,但较脆,在物料颗粒的冲刷下,氧化膜出现极小徽快的剥落,在剥落掉的金属表面上再形成新的氧化膜层,磨损就在这一过程中在进行。下表给出了氧化层与其它一些物质的硬度的比较(3): 表1 物料硬度表 (20℃时)
物料 石灰石硅酸盐 钢 镀层 氧化膜
硬度(HV) 140-160 800 130-250 500-1800 600-1800
可见氧化膜的硬度极高,如能在管子表面形成氧化膜,对减少磨损是极其有利的。氧气膜的形成速率很重要,若其小于磨损速率,金属表面就形成不了氧化膜。实验发现管壁温度在300多摄氏度以上时,较易形成氧化膜。
CFBB的密相床一般处于还原性气氛,对于在金属表面形成氧化膜是不利的,可用耐磨材料覆盖管子以避免严重的磨损。在还原与氧化气氛交界处,由于这一界面会上下波动,也会导致磨损加重,应与还原区同样处理。
在炉膛下部壁面垂直段与渐缩段交界处、炉顶及炉膛出口等处,都是易发生严重磨损部位,在设计时应在结构上给以考虑或加防磨措施。尾部对流受热面的磨损亦是一个必须认真对待的问题,我国先期投运的若干台CFBB已出现磨损现象。有些人认为CFBB安装有分离器,尾部烟道的飞灰浓度比BFBB低,这种认识是不全面的,安装了分离器,将其收集的灰送回炉膛,导致了炉膛内灰浓度的增加,人们针对这一高的灰浓度来设计分离器,为了能维持正常运行所需的灰循环,分离效率往高达99%以上,尽管如此之高,但由于炉内的高浓度分离器未能收集而排出灰量的绝对值可能仍很高,尾部如此之高,但由于炉内的高浓度仍很大。在尾部烟道烟气是向下流,颗粒一边随烟气流动,一边受重力作用,颗粒的绝对速度是烟气速度加上颗粒粒度又大,导致省煤器等尾部的受热面磨损严重。在省煤器等尾部受热面管束的弯头与壁面之间如间隙较大,形成烟气走廊,磨损将加速。金属壁面的磨损速率与速度呈3-3.5次方的关系,与灰颗粒直径为平方的关系。在尾部烟道设计时应充分考虑上述因素,选择合适风速,设计合理结构,避免受热面的严重磨损。
5、循环流化床(CFB)锅炉床层高度
床压过高或过低的原因及处理措施” “CFB 床压过高或过低的原因及处理措施” 返料的波动会使床压大幅波动大量的一次风会使床压暂时降低, 马上又会大 幅上升冷渣器回返影响床压 在 CFB 锅炉的外循环系统(飞灰捕集和回送装置) 、布风装置工作正常时, 只要燃煤粒径不严重超限,床料排放控制合理,床层流化无故障,床压不会过高 或过低,除非是测量装置错误,运行人员误判断。 床压过低时可采用投飞灰再循环,增加石灰石,减少一次风等方法。对了,循 环料过多引起床压高时, 还可以通过回料阀放渣来降低床压----但因为这里 放料一般没渣的冷却装置,比较危险。 床压的全称为炉膛底部压力或者布风板压力. 床压=炉膛底部压差+炉膛中 部压差+炉膛上部压差床压高,最常见一是因为下部粗料过多,二是因为循环料 过多,其实炉膛底部粗床料并不多而炉膛中上部物料浓度过大.第一中问题较容 易解决,加强排渣即可.而如果是第二种,你单位采用的又是风水联合冷渣器就 较难解决,因为循环料冷渣器很难排走,既是循环料进入了冷渣器,也会从回风 返回炉膛.遇到第二中情况时,首先应停止加石灰和飞灰再循环.然后,联系更 换灰份较小的煤种.加强排渣.强烈向你单位建议将1或2台冷渣器改为滚筒冷 渣器,它能能将粗.细料一起排走.降低符合也是必要的,但是为维持床温,减 少流化风量后,因为炉膛上部床料的回落和回料阀中积料量减少,床压会有个飞 升的过程,床温过低,你就投油吧,但如果你的启动燃烧器配有点火增压风机, 启动该风机时一定要注意, 风室压力会大幅上升-----这个参数一般都是C FB锅炉MFT的条件之一。 CFB 床压过高的原因:1 床料位过高、2 风室漏渣严重、3 床压测点损坏 CFB 床压过高处理措施:1 加强排渣、2 校对床压测点、3 严重时停炉处理 CFB 床压过高或过低问题的讨论
更多资讯请关注【山西蓝天www.sxlantian.com】
6、华西能源能制造60万的锅炉嘛?
公司经营范围
公司的主营业务有:300MW及300MW以下煤粉炉、200MW及200MW以下循环流化床锅炉等大中小电站锅炉、工业锅炉、特种锅炉、电站辅机、高中压阀门、电站控制设备、石油化工容器等产品。具备电站锅炉岛的设备成套能力。
公司主要产品:
300MW等级亚临界自然循环中间再热煤粉锅炉;
440t/h、480t/h、 680t/h 超高压中间再热煤粉锅炉,包括200MW液态排渣煤粉锅炉和200MW调峰机组煤粉锅炉;
20t/h~680t/h 多种燃料循环流化床锅炉;
20t/h~220t/h飞灰再循环流化床锅炉;
40t/h~1000t/h碱液回收锅炉
150t/h~500TDS/D垃圾焚烧锅炉
各种容量的蔗渣锅炉、蔗渣煤粉锅炉、余热锅炉等;
电站阀门和电站锅炉自控系统;
石油、化工、航天等部门用各种高、中、低压容器和真空容器。
公司电站锅炉年生产能力达8000MW当量。
7、请问发电厂锅炉飞灰含碳量高的原因有那些?如何降低飞灰含碳量?我们厂是四角切圆煤粉锅炉!300MW的
飞灰含碳量高的原因
a. 当排烟氧量增加,飞灰可燃物降低,燃烧效率上升。综合考虑不致使排烟热损失过度增大的前提下,适当提高过剩氧量。推荐的排烟氧量控制值如下: 315 % (MCR) : 412 % (85 %MCR) ; 510 % (70 %MCR) ;610 %(55 %MCR) ;810 %(30 %MCR) 。 二次风风压低和风量不足的问题, 建议对风道和预热器进行彻底检查找漏, 也可将二次风小环管即播煤风改用一次风代替, 相应增加了二次风大环管即燃烧风风量。如果上述改进后二次风压、风量还不够, 建议对二次风机进行增容。
b. 随着床压升高, 飞灰可燃物有规律减小。
运行中在综合考虑其他因素(如床体良好流化、正常排渣、合理的风机电耗) 的前提下, 可适当提高床压在510~615 kPa 范围, 以降低飞灰可燃物。
c. 飞灰可燃物随着燃煤挥发分提高而降低。
大化电厂CFB 锅炉主要烧辽宁西马煤, 挥发分很低, 与无烟煤接近, 属于难以着火和极难燃尽的煤种。要降低飞灰可燃物后尽可能采用高热值、高挥发分的煤种, 但也需综合考虑各有关技术经济因素, 如: 锅炉热效率、结焦的危险、运行成本、检修周期及费用、煤价及运费等。
要严格控制入炉煤粒度< 10 mm , 煤的粒度分布也要符合要求, 中位径( X50) 在2 mm左右。这需要加强燃料设备维护, 当破碎机筛板、环锤磨损超标时及时维修或更换。在破碎机出现堵煤时, 立即安排人力扒放, 严禁旁路上煤。雨季期间, 保持燃料厂房内卸煤沟贮煤量, 不从露天煤场上煤, 可以有效地减少二级破碎堵煤现象。
d. 对于难燃煤种, 适当提高床温可以降低飞灰可燃物。当然要综合考虑脱硫反应的最佳温度和煤的变形温度等, 床温的控制不宜超过950 ℃。
e. 提高旋风分离器的效率, 降低飞灰可燃物含量。将入口烟道缩口适当提高分离器进口风速,适当加长中心筒长度都可以提高分离器效率。
f . 采用飞灰再循环可以将未能燃尽的飞灰可 燃物引入炉膛再次燃烧, 可以有效地降低飞灰可燃物含量。 影响锅炉热效率的主要因素为排烟热损失( q2)和固体未完全燃烧热损失( q4) , 减少固体未完全燃烧损失主要通过降低飞灰可燃物含量来实现。大化热电厂CFB 锅炉设计q4 为2148 % ,实际在5 %左右。因此优化锅炉运行方式,降低飞灰可燃物含量,对提高锅炉的热效率和经济运行具有重要意义。
http://www.chd-prc.cn/bbs/ShowPost.asp?id=98
目前虽然锅炉飞灰、制粉单耗均已达较好水平,对飞灰、制粉单耗、煤粉细度也始终进行着跟踪调整,并已下达运行操作卡片。然而飞灰偏大问题一直未能得到根本解决。飞灰含碳量有所好转,但仍不能控制在国家规定标准以内。我厂为节约用水而采用的干除灰系统即将全面投运,综合利用灰渣的粉煤灰砖厂即将投产,也面临无原料的问题。为此我们重新组织在#5炉进行了燃烧调整试验,以期找出影响大渣含碳量大的主要因素及最佳运行方式,并相应进行了分析。
一、燃烧调整试验:
1. 利用配风装置按设计风速(一次风速30m/s)调平一次风。
2. 提高下排一次风速(一次风速35m/s)。
3. 调整风量,提高二次总风压,增加氧量。改变二次风配比,采取上小,下大配风方式,增加下二次风刚性,增加下二次风的托粉能力。
4. 采取两头大,中间小配风方式。
5.
降低下排给粉机转速:在能够保持燃烧工况相对稳定的前提下,减少下排给粉机给粉量,下排给粉机转速控制在500—550rpm,降低下一次风煤粉浓度,以进一步相对提高下二次风的托粉能力。
6. 在各个工况下,测量炉膛温度,取灰样、煤样,化验其大、小灰百分数,及煤粉细度,记录各运行参数。
7. 改变煤粉细度。
通过运行调整,飞灰含碳量由原来的18.5%下降到13.8%。在本次燃烧调整中发现#2、#3、#4角一层二次风风速偏低,无法托住下排一次风,联系锅炉分场进行了处理。处理后,#2角一层二次风风速由原来的27m/s提高到37m/s,#2、#4角一层二次风风速也有所提高。并在4月份利用停机机会进行了彻底处理。目前#5炉的飞灰含碳量一般控制在10%以下。
二、分析:
通过燃烧调整可以降低飞灰含碳量,但其手段是有限的。提高一次风速及降低下排给粉机转速均受到机组负荷的限制,负荷降低采用这种措施将影响燃烧的稳定性。在低负荷时受总风压的限制提高一层二次风的幅度是有限的,并且提高一层二次风影响燃烧的稳定性。降低煤粉细度将导致制粉单耗的增加,影响厂用电率。而提高二次风压将导致风机单耗增加,同时增加了预热器漏风。目前我厂#5、#6炉在高负荷时引风量不足,漏风率的增加将进一步加剧高负荷时缺风的问题。
但所有这些手段只能降低飞灰的含碳量,而不能根本解决飞灰含碳量不合格的问题。
导致飞灰含碳量高的根本原因是下排燃烧器的问题。我厂锅炉设计的一次风射流为直流射流水平射出。但我厂目前下排一次风所采用的富集型或开缝式钝体燃烧器射出的一次风气流并不是水平射流。一次风经过富集器或开缝式钝体后,气流分成三股。中间一部分气流为水平射流,上下两部分气流分别为斜上方、斜下方,然后经出口水平段定向后变为近似水平方向。由于水平段较短,射出的气流仍不是水平的。开缝式钝体燃烧器较富集型燃烧器的水平段更短,气流的下冲及上冲现象更为严重。一层二次风无法完全下冲的气流,导致煤粉不能完全燃烧就落入冷灰斗。同时,气流自这两种燃烧器喷出后,迅速扩容,流速下降,一次风的携带能力下降,导致风粉分离,部分煤粉几乎未经燃烧就落入冷灰斗。这些原因导致飞灰含碳量明显增加,而采用开缝式钝体燃烧器的锅炉飞灰含碳量更高。
因此若使飞灰含碳量在整个负荷段均控制在合格范围内,必须进行燃烧器改造。
三、对策:
导致飞灰含碳量不合格的根本原因是下排燃烧器,因此必须进行燃烧器改造。
目前低负荷稳燃型燃烧器主要有船体燃烧器、钝体燃烧器、大速差燃烧器、偏置射流燃烧器、富集型燃烧器、开缝式钝体燃烧器、浓淡型燃烧器、浓稀相燃烧器、多重富集燃烧器等。前面几种燃烧器由于稳燃能力较差,已逐渐被淘汰。目前富集型燃烧器、开缝式钝体燃烧器、浓淡型燃烧器、浓稀相燃烧器、多重富集燃烧器一般不投油负荷在50%。
清华大学设计的多重富集燃烧器是其为解决富集型燃烧器飞灰大问题而设计的燃烧器。其原理根本上仍是浓淡型燃烧器,出口射流为水平射流。目前应用在田家庵电厂。由于该燃烧器装在中排,与我厂安装位置不一样,虽然飞灰含碳量不高,也不具有可比性。在其他电厂还没有得到推广。
浓淡型燃烧器与浓稀相燃烧器根本原理相同。主要就是利用一些特殊结构将一次风射流分为浓稀不同的两股射流。由于浓股射流煤粉的着火热低而首先着火,然后引燃整个煤粉气流。
以前浓淡型燃烧器由于浓淡比例不合理,在高负荷时浓侧的一次风管容易堵塞而影响其推广,目前这个问题已经解决。同时为提高浓淡型燃烧器对负荷及机组的适应性,目前已出现了煤粉浓度可连续调节双稳燃浓淡型燃烧器。在高负荷时降低浓股气流的浓度防止堵管,低负荷时提高浓股气流的浓度以提高稳燃能力。
目前浓淡燃烧技术已十分成熟,该型燃烧器已全面推广,大部分电厂均采用浓淡型燃烧器。
目前有许多厂家生产浓淡型燃烧器。徐州电厂采用的是清华大学的产品。据徐州电厂介绍,其飞灰一般在2%左右,即使接近大修周期时也能控制在8%以内。广州恒运电厂采用的是浙江大学技术,现场观察飞灰含碳量不超过4%,该厂飞灰、飞灰均全部外售。
西安普华燃烧工程公司生产的煤粉直接点火燃烧器主要功能是启动节油,稳燃能力有限。
综上所述,建议本次燃烧器改造中采用浓淡型燃烧器。
同时影响飞灰含碳量的另一个原因是二次风。目前各角的二次风采用高位布置,由于沿途气流分流气压下降,到最下层时气压已经很低。即使一层二次风门全开,也难以保证风速达到设计值,无法托住一层二次风。因此在有条件的情况下,将各角二次风箱向下延伸至一层二次风处,采用由下向上逐步分流,以保证一层二次风在设计值。
http://bbs2.01hr.com/club/clubPage.jsp?ccID=19&tID=4928
8、gfg型和fg型沸腾干燥床的区别
流化床锅炉密相床的燃烧份额大,需布置埋管受热面以吸收燃烧释放。埋管的传热系数高达220-270KW/MC比CFBB炉膛受热面的100-500kw/m2℃离得多尽管BFBB稀相区内的传热系数比要低,但因在稀相层内的吸热量所占份额较小,总的来说,对于容量较小的锅炉BFBB结构受热面的钢耗量要少小些,BFBB的燃烧主要在相床给煤的平均粒径偏大,煤破碎设备较为简单,电耗也底流化速度低,细煤粒在悬浮断停留时间长,炉膛也做的低。虽埋管有磨损,但如防磨损失处理得好,一般横埋管可用五年,竖埋管可用…….采用尾部飞灰再循环,BFBB的燃烧效率可达97%,如在炉膛出口安装分离器实现热态飞灰再循环,则可高达98-99%,但此时装设分离器的目的主要是为了提高燃烧效率而不是象CFBB主要上为了改变炉内的燃烧传热机理。
将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有流体的某些表观特征,这种流固接触状态称为固体流态化,即流化床。
沸腾床状如沸腾液体的流态化固体颗粒层(见固体流态化)。一般,具有液体的一些特性,如对器壁有流体压力的作用、能溢流和具有粘度等。由于工作的固体物的颗粒比较小,且在流体作用下处于剧烈运动的状态,对于许多化学反应(如焙烧、催化、催化裂化等)和许多化工过程(如干燥、吸附等)的进行有利。
9、哪里的焚烧炉拥有发明专利技术?
目前国内、外城市生活垃圾处理方式采用的主要有卫生填埋、高温堆肥和焚烧等三种处理方式。卫生填埋、高温堆肥由于占地面积大、二次环境污染,其的使用比例越来越少。但是以无害化、资源化、减量化为最终处理目标的焚烧处理越发地得到高速发展,使得城市生活垃圾的焚烧技术获得了广泛的应用。焚烧处理的技术特点是:减容效果显著、无害化程度高;焚烧处理设施占地面积小,对周围环境没有二次污染;在垃圾热值较高、处理达到一定规模时,还可以利用其余热发电或供热。焚烧处理方式能最快地、最大限度地实现固体废物无害化、稳定化、减量化,大型的处理系统还备有热能回收与利用装置,使其变废为宝、废旧利用回收能源,成了垃圾处理的环保主流。焚烧技术正朝着高效、节能、低造价、低污染的方向发展。因此,经济发达、垃圾热值较高的城市,因此采用先进的焚烧技术来进行城市垃圾的处理是最佳选择和投资。垃圾焚烧处理工艺技术和设备已日趋成熟。我国主流垃圾处理焚烧炉型包括:Basic1脉冲抛动式垃圾焚烧炉、马丁炉往复式机械炉排炉、LXRF系列立式旋转窑焚烧炉、流化床焚烧炉等。而且其它配套发电或供热的生产技术及设备如:余热锅炉、汽机、烟气脱硫、水处理系统、电气、自动控制等基本上都是大同小异,并且已经很成熟。在此浅析我国国内常见的几种垃圾处理焚烧炉。
2、几种常用焚烧炉型号
2、1Basic1脉冲抛动式垃圾焚烧炉
Basic1脉冲抛动式垃圾焚烧炉是由美国John . N Basic Sr发明地,专门用于焚烧处理固体废物的专利技术。经过不断改进、完善,现已拥有7百多项受美国和世界其它国家保护的独立专利技术,该项技术被广泛用于处理生活垃圾、工业垃圾、医院卫生废弃物、淤泥和废橡胶轮胎等,在全世界共建共有1百多座采用该项技术的垃圾焚烧装置。
2、1、1脉冲抛动式垃圾焚烧炉的主要特点
1)处理垃圾范围广泛。能够处理工业垃圾、生活垃圾、医疗废弃物、废弃橡胶轮胎等,并且垃圾入炉焚烧前不需进行任何预处理。
2)脉冲抛动炉排技术的焚烧炉,有自清洁功能。炉排上空气通道向下倾斜设计,吹入的空气一方面起道吹扫炉排功能;另一方面防止垃圾堵塞空气通道。另外炉排的悬吊机构和动力装置全部设置在炉膛外部,便于检修维护。
3)炉排结构新颖。该炉每块炉排为整体炉排,采用悬吊式阶梯形结构,垃圾的运动轨迹始终在凹槽内,与四周水冷壁接触较少。
4)燃烧热效率高。正常燃烧热效率80%以上,除焚烧炉点火以及偶尔连续性的雨天造成垃圾中水份过大(60%以上)时,为使二燃室的温度保持在8500C以上,需喷入少量燃油助燃外,正常情况下即使是焚烧水份很大的生活垃圾(50%以内),也不需添加煤或重油等辅助燃料。
5)运行维护费用低。由于采用了许多特殊的设计(如整体炉排),没有庞大复杂的机械传动系统,整个传动系统都设计在炉膛之外,传动部件没有暴露在炉膛内高温下,因此本焚烧炉的事故率和维护量都很低,节省了维护费用。以及较高的自动化控制水平,因此运行维护人员少,维修工作量也较少。
6)可靠性高 。国产设备,近年来运行表明,该焚烧炉故障率低。
7)排放物控制水平高。 严格控制烟气在二、三级再燃烧烟道的燃烧过程,严格地控制燃烧温度、空气配比量和停留时间,达到减少碳氢化合物、一氧化碳和氮氧化物等有害气体的生成。经测试,烟气排放物中CO含量1—10 PPM,HC含量2—3 PPM,NOx含量35 PPM,低于美国及欧洲烟气排放标准,特别是系统保证烟气在燃烧系统中(850℃以上的温度)停留不少于2秒钟,使二恶英排放降到最低,完全达到欧美国家的排放标准。
2、1、2工作原理
垃圾经自动给料单元送入焚烧炉的干燥床干燥,然后送入第一级炉排,在炉排上经高温挥发、裂解,炉排在脉冲空气动力装置的推动下抛动,将垃圾逐级抛入下一级炉排,此时高分子物质进行裂解、其它物质进行燃烧。如此下去,直至最后燃尽后进入灰渣坑,由自动除渣装置排出。助燃空气由炉排上的气孔喷入并与垃圾混合燃烧,同时使垃圾悬浮在空中。挥发和裂解出来的物质进入第二级燃烧室,进行进一步的裂解和燃烧,未燃尽的烟气进入第三级燃烧室进行完全燃烧;高温烟气通过锅炉受热面加热蒸汽,同时烟气经冷却后排出。
2、1、3焚烧机理
垃圾入炉焚烧前不需进行任何预处理。生活垃圾废物经自动或人工控制的给料机送入焚烧炉干燥炉炉排架干燥、热解,在干燥炉架上,接受主炉膛中的辐射热后,蒸发出垃圾中的水分,使固体垃圾更加容易燃烧。此阶段(干燥热解气化段)控制燃烧空气量,供氧量不足。同时部分垃圾在高温辐射作用下,开始进行化学分解,其中的部分高分子烃类和一氧化碳等可燃物挥发出来,干燥炉排处温度控制在500℃~600℃左右,这样就有了最佳的热分解温度,可以达到最好的分解效果,由于引风机的作用,这部分气体在主炉膛内的停留时间很短,只有1~2秒钟,由于氧气供应并不充分,只有25%的碳氢化合物在主炉膛燃烬,15%的固定碳在炉排燃烬,其余60%左右的挥发性碳氢化合物进入再燃室。烘干后进入第一级炉排,在炉床上经热解产生出的挥发性物质和可燃物在高温下燃烧。垃圾燃烧剩余的固体物留置在炉排上,通过与空气的剧烈混合和炉排的抛动,垃圾被抛入下一级炉排继续燃烧。共计有六级脉冲焚烧炉排。如此下去,道斯炉燃烧原理示意图直至进入最后一级炉排燃烧时,喷入的空气量使废料完全燃尽后,进入灰渣坑,由自动除渣装置排出。此时就整个焚烧炉炉膛与再燃室接口状态看,空气、燃料颗粒、挥发分略呈不完全燃烧状态由于各级炉排的燃烧强度和燃烧废物量不一样,所需的空气量不同,因此每层炉排的振动频率和摆动幅度也不一样,完全由计算机控制,准确性高。根据燃烧特点和传热方式的不同,可分为三个阶段:第一阶段在炉膛内布置有膜式水冷壁管,接受燃料燃烧的辐射热能。燃烧空气由每个炉排的下部风机送入,经喷嘴进入炉膛,在气流作用下废物保持松散浮动燃烧,因此这种焚烧炉既有炉排炉的特点,又有少量流化床的特点。炉床燃烧后的烟气中有许多焦炭颗粒和未燃烧物质,此时温度达860℃;第二阶段是随着烟气进入第一级再燃烧烟道与定量高速喷入的空气剧烈混合燃烧,仍有未燃烬继续进入第二级再燃烧烟道与过量空气剧烈混合继续燃烧,温度达1000℃,此过程没有热交换,主要目的是提高烟气的温度加快烟气中有害物质的分解;第三阶段为控制余热锅炉进口温度,从省煤器出口处抽取部分190℃的烟气回送至余热锅炉前混合,使进入余热锅炉的烟气温度保持在760℃,燃烧完全的高温烟气经过过热器、省煤器、空气预热器进行对流换热,然后经干石灰与活性碳吸收处理,再经过半干式烟气处理设备和布袋吸尘器经引风机抽出,由烟筒排往大气,吸收塔下部飞灰与石灰等混合物由排灰装置排出。
2、2马丁炉型机械炉排炉
2、2、1马丁炉型垃圾焚烧炉的主要特点
炉排的材质要求和加工精度要求高,要求炉排与炉排之间的接触面相当光滑、排与排之间的间隙相当小。1)处理垃圾范围广泛。但是,在垃圾贮坑的垃圾进行分区堆栈、发酵、翻拌混合可使垃圾的组分均匀; 2)炉排炉的炉床由众多的炉条组成。马丁炉条用高铬耐热、耐磨铸铁制造,材质性能较为优异,结构上也有独到之处,炉条的筋板作成封闭的一次风通道,利用一次风的高速流动将炉条的热量带走,起到散热翅片的作用,有效地降低炉条的工作温度,从而延长了炉条的使用寿命; 3)操作实现全部机械化、自动化; 4)很好的焚烧处理效果; 5)产生烟气量少,尾气易于处理,二恶英排放能达到环保标准。
2、2、2工作原理
垃圾通过进料斗进入倾斜向下的炉排(炉排分为干燥区、燃烧区、燃尽区),由于炉排之间的交错运动,将垃圾向下方推动,使垃圾依次通过炉排上的各个区域(垃圾由一个区进入到另一区时,起到一个大翻身的作用),直至燃尽排出炉膛。燃烧空气从炉排下部进入并与垃圾混合;高温烟气通过锅炉的受热面产生热蒸汽,同时烟气也得到冷却,最后烟气经烟气处理装置处理后排出。
2、2、3焚烧机理
垃圾由垃圾车运来后,卸入垃圾池中,垃圾吊车将卸下的垃圾进行翻拌、混合,并按垃圾贮坑的作业程序进行分区堆栈、发酵、翻拌混合可使垃圾的组分均匀,避免进炉的垃圾热值忽高忽低,从而导致炉温过大的波动;堆栈发酵是解决高水份、低热值垃圾焚烧的重要经验,其机理是析出部分水分且产生沼气,既提高了进炉垃圾的热值,又使垃圾容易着火燃烧。经过二~三天左右堆栈发酵的垃圾由吊车抓取投进垃圾料斗。料斗与料槽的接合处设有料门,用于点火起炉和熄火停炉操作过程中,料槽内没有垃圾,关闭料门可使炉膛与外界隔开,维持炉内负压。按升温曲线达到投放垃圾时,料门开启,垃圾沿料槽下落到给料平台并充满整个料槽,给料装置将垃圾推送落炉排上,垃圾在炉排翻送过程中受到燃烧器和炉内的热辐射以及一次风的吹烘,水份迅速蒸发,着火燃烧,炉温逐步升高,当炉温达到600℃时,燃烧器退出,垃圾焚烧进入正常状态,炉温继续升高并维持在850℃左右。垃圾在炉排上依次通过干燥、燃烧和燃烬三个区域,垃圾中的可燃成份完全燃烧,不可燃的灰渣由炉渣滚筒送出落入出渣机中,出渣机贮有水并保持着一定的水位起到水封作用,确保炉内负压的稳定,灰渣在出渣机内熄火和降温后被推送出来,由振动输送带送去灰渣贮坑,在抛灰机的作用下落入灰渣贮坑中,垃圾经焚烧处理后成为稳定、无害的灰渣。振动输送带还有一个作用是使灰渣中的金属物暴露出来,便于悬挂在振动输送带上方的除铁器将其吸出,汇集后打包回用。垃圾焚烧过程中,有些细灰从炉条之间的缝隙落到各风室中,这些灰称之为‘漏灰’,定时由漏灰排出系统依次打开风室下面的活门,漏灰在风室的风压作用下落入灰槽中,灰槽一端通出渣机,另一端带有风门与公共风室连接,漏灰排出系统按程序将风门瞬时打开,将漏灰吹送入出渣机中,最后与灰渣一起被排走。灰渣贮坑上方装有桥式抓斗起重机,用抓斗将汇集在灰渣贮坑中的灰渣抓取,装车外运、填埋。燃烧用的空气取自(垃圾池是密封)垃圾贮坑的上方,由鼓风机抽吸和压送进行二级加热,第一级为蒸汽暖风机,第二级为烟气暖风机,风温提高到250℃左右,然后分成一次风和二次风,一次风进入到炉排下方的公共风室,通过各风室风门的调节,获得最佳的风量分配,最后经炉条的风道穿过垃圾层进入炉膛,提供垃圾焚烧所需的氧量;二次风通过二次风风道经调节风门从燃烧室上方前、后拱处的两排喷嘴喷射进炉膛,对燃烧气进行扰动和补充氧量,达到充分燃烧的目的。燃烧空气从垃圾贮坑抽取是为了将这些被污染带有恶臭的空气送入炉内进行高温处理,并维持垃圾贮坑的负压状态,避免其外逸而造成周围环境的污染。垃圾燃烧产生的高温烟气在引风机的抽吸下首先通过锅炉第一通道,第一通道水冷壁下部用耐火材料敷设有相当长的卫燃带,用以减缓热交换的速度,使在此区域内的烟气温度保持着不低于850℃,有利于二恶英最大限度的分解。敷设卫燃带还可避免水冷壁裸露在高温烟气中而产生的高温腐蚀。烟气经凝渣管从上而下通过第二通道,采用辐射传热进行热交换,再急转进入满布对流受热面的第三通道和第四通道,加快了热交换的速度,在锅炉出口处烟温降至380℃左右。随后通过布置有管式烟气暖风机的第五通道,与空气进行最后的热交换,被冷却到270℃左右。为了保证静电除尘器入口的烟气温度稳定在设定的温度值,锅炉的第四通道设有旁路烟道和调节挡板,通过调节流经第四通道的烟气量来控制静电除尘器入口的烟温。完成热交换后的烟气进入烟气处理系统。
2、3LXRF立式旋转窑焚烧炉
LXRF系列立式旋转热解焚烧炉是由深圳市汉氏固体废物处理设备有限公司和清华大学环境科学与工程系共同研制开发、生产制造的,是垃圾焚烧过程中的关键设备。该研制项目为深圳市高新技术项目,并已申报国家863计划。国家建设部的《建设行业垃圾处理科技发展“十五”计划和2010年规划大纲》将此技术的研发列入2006-2010年的科技发展目标中,该焚烧炉采用当今世界上最为先进的热解气化焚烧技术,在焚烧炉主体设计上采用了独特的专利技术。
2、3、1LXRF系列立式旋转热解焚烧炉的特点:
设备利用率高,灰渣中含碳量低,过剩空气量低,有害气体排放量低,垃圾热值低时燃烧困难。
1)燃烧机理先进;
2)设备制造、运行成本较低;
3)对国内垃圾适应性强。适合于我国城镇低热值、高水分、不分拣的生活垃圾;特别适合于医疗废物等特种垃圾;部分工业废弃物;
4)垃圾不需要预处理,操作实现全部自动化;
5)焚烧处理效果好;
6)产生烟气量少,尾气易于处理,二恶英排放几乎为零。
2、3、2工作原理
回转式焚烧炉是用冷却水管或耐火材料沿炉体排列,炉体水平放置并略为倾斜。通过炉身的不停运转,使炉体内的垃圾充分燃烧,同时向炉体倾斜的方向移动,直至燃尽并排出炉体。
2、3、3焚烧机理
该炉从结构上分为热解气化炉和二燃室。热解气化炉内燃烧层次分布,从上往下依次分为干燥段、热解段、燃烧段、燃烬段和冷却段。进入热解气化炉的垃圾首先在干燥段由热解段上升的烟气干燥,其中的水分挥发;在热解气化段分解为一氧化碳、气态烃类等可燃物并形成混合烟气,混合烟气被吸入二燃室燃烧;热解气化后的残留物(液态焦油、较纯的碳素以及垃圾本身含有的无机灰土和惰性物质等)沉入燃烧段充分燃烧,温度高达1100-1300℃,其热量用来提供热解段和干燥段所需能量。燃烧段产生的残渣经过燃烬段继续燃烧后进入冷却段,由热解气化炉底部的一次风冷却(同时残渣预热了一次风),经炉排的机械挤压、破碎后,渣系统排出炉外。一次风穿过残渣层给燃烧段提供了充分的助燃氧。空气在燃烧段消耗掉大量氧气后上行至热解段,并形成了热解气化反应发生的欠氧或缺氧条件。由此可以看出,垃圾在热解气化炉内经热解后实现了能量的两级分配:裂解成分进入二燃室焚烧,裂解后残留物留在热解气化炉内焚烧,垃圾的热分解、气化、燃烧形成了向下运动方向的动态平衡。在投料和排渣系统连续稳定运行时,炉内各反映段的物理化学过程也持续稳定进行,从而保证了热解气化炉的持续正常运转。
2、4流化床焚烧炉
2、4、1特点:
流化床燃烧充分,炉内燃烧控制较好,但烟气中灰尘量大,操作复杂,运行费用较高,对燃料粒度均匀性要求较高,需破碎装置,石英砂对设备有磨损,设备需要定期维护。
1)利用垃圾、煤的异重比,采用特殊的布风方式,使垃圾在炉内循环燃烧,彻底清洁处理垃圾;
2)通过布置两级分离器对物料的分离和回送,可以很好地控制燃烧,提高燃烧效率且达99%以上;
3)采用中低温燃烧(炉膛出口烟温850℃)和分级送风分段燃烧的方法,有效抑制和降低SO2及NOx的排放;
4)对于含硫分和氯分高的城市生活垃圾,采用炉内添加石灰石以及尾部洗涤的方法来降低如SO2和HCl的排放;
5) 垃圾污水由污水泵送至炉内高温处理,垃圾储仓中的臭气由二次风机抽吸至焚燃炉内作为垃圾焚烧助燃空气,保持地下水和周围大气环境的清洁;
6) 采用独特的灰渣分选冷却装置,在冷却灰渣的同时,将合适的流化床料分选出并回送至流化床中。
2、4、2工作原理
炉体是由多孔分布板组成,在炉膛内加入大量的石英砂,将石英砂加热到600℃以上,并在炉底鼓入200℃以上的热风,使热砂沸腾起来,再投入垃圾。垃圾同热砂一起沸腾,垃圾很快被干燥、着火、燃烧。未燃尽的垃圾比重较轻,继续沸腾燃烧,燃尽的垃圾比重较大,落到炉底,经过水冷后,用分选设备将粗渣、细渣送到厂外,少量的中等炉渣和石英砂通过提升设备送回到炉中继续使用。
2、4、3焚烧机理
锅炉采用异重流化床燃烧方式和低倍率分级分离循环返料的燃烧系统,该系统由炉膛、物料分离收集器和返料器三部分组成。炉膛上部由膜式水冷壁组成,下部为一个倒锥体流化燃烧室,亦称为密相区。底部为水冷布风板,布风板上布置有特殊形式的风帽。布风板下由水冷管构成等压风室。一次风经等压风室、布风板风帽进入密相区使燃料开始燃烧,并将物料吹离布风板。二次风由床层上方的二次风口送人炉膛,一二次风比例约为7:3,并可根据燃料变化和运行情况进行调节,既能达到完全燃烧的目的,又能控制SO2和NOx的生成量。
另外,由一次风引出几支风管从前后墙进入密相区,分别拨动垃圾、煤和返料灰,以便垃圾、煤和返料灰等物料均匀播撒到床料中去,同时加强密相区下部的扰动。
密相区上部为悬浮段,为保证烟气在炉膛中停留时间大于2秒,炉膛断面有所扩大。烟气携带物料继续燃烧,同时向炉膛四周放热。由于断面扩大,并且烟气经悬浮段碰撞炉顶防磨层,部分粗物料返回密相区,烟气只携带细物料离开炉膛进入一级分离器。 一级分离器为四排撞击式分离器,由凝渣管构成,布置于炉膛出口处,作为炉内分离装置。烟气通过一级撞击式分离器时,物料中较粗部分被分离出来,落人分离器下方收集斗,返回炉膛后循环再燃烧。 经一级分离后的烟气携带较细的物料,再经过过热器后进入二级分离器——下排气蜗壳式旋风分离器,将细物料进一步分离和收集起来,通过U型返料器返回到密相区中,继续循环燃烧。 过热器为纯对流型,分二级,为防止高温腐蚀,布置在炉膛出口,凝渣管后面。为保证管壁温度不超温,沿烟气流动方向依次为低温过热器和高温过热器。 两级过热器之间设有面式减温器调节汽温,考虑到焚烧垃圾烟气量较大的特点,面式减温器调温幅度在0-40℃之间。为防止过热器管子磨损,除把过热器布置在一级惯性分离器之后外,过热器前两排管子还采用了喷镀镍基合金防磨技术。 锅炉采用两只蜗壳钢板式中温旋风分离器,外部为钢板结构,内部敷设保温、绝热和防磨材料。分离器人口采用蜗壳式布置,能保证分离效率达到99.3%回料阀采用非机械式“U”阀回料器,保证回料通道通畅,并能耐高温、耐磨损和防粘结。空气预热器为立置管式,分上下两级布置。 空气预热器管子采用Ø51×1.5的螺旋槽管,在入口处装有防磨套管。为防止低温腐蚀,空气预热器下级采用了防腐蚀的考登管。给料系统分为给垃圾和给煤两个系统,均布置在炉前。给垃圾系统为一链轮式给料装置,垃圾通过链轮输送到炉膛人口,在播垃圾风的吹撒下均匀地散落在床层上。给煤系统由两台正压螺旋给煤机组成,单台给煤量均大于满负荷给煤量。锅炉燃烧后产生的炉渣通过布风板后侧排渣口接至冷渣分选装置,冷却后连续出渣。当冷渣分选装置出现故障时,可利用紧急放渣管采用人工间断出渣,出渣量以维持适当的料层为准。 旋风分离器分离出来的灰,全部或部分返回炉膛作为调节床料温度、炉膛出口烟温和降低锅炉出口排尘浓度的一种手段。在锅炉正常运行时,可通过炉膛加砂口适量添加床料以维持料层高度。同时补充部分辅助燃料—原煤,以保证热电厂的正常供热和发电。余杭热电厂的垃圾焚烧炉至今已运行,运行状况良好。其运行情况 :垃圾焚烧炉,运行稳定,各项技术参数和指标均达到了设计要求,保证了发电机组的正常运行;最长连续运行时间超过一个月;平均每小时焚烧垃圾约7吨,最大量可达到11吨/小时;对垃圾成分、热值随季节性变化和适应性好。
3、小结
3、1垃圾预干燥处理系统
一般来说,在垃圾进入焚烧炉之前,在垃圾贮存库内放置3~5天时间,可以对垃圾进行初步的干燥,主要将垃圾中含有的外水,进行干燥,这部分水分根据垃圾的来源和自然情况的不同,约占垃圾重量的10%~30%左右。这部分水分主要是通过蒸发的形式离开垃圾储存库的,垃圾储存库有相当大的换气量,因此相应外水的蒸发量也是相当大的,垃圾中分离出来的水分与垃圾储存库中的空气一起离开,并进入垃圾焚烧炉通过烟囱排放大气。另有少量在垃圾坑深处的外水则向下汇集,被渗沥水泵收集后喷入焚烧炉炉膛蒸发。由于渗沥水要吸收一部分炉膛热量,且水量不大,因此炉膛并不是时刻接受渗沥水的喷入的。在渗沥水需要处理时,先将炉膛温度调整到上限,并在系统中逐步增加负荷,少量喷入渗沥水后,再逐步调整。
3、2焚烧炉内的垃圾干燥系统
被垃圾抓斗送入焚烧炉的垃圾已经含有外水已经不多了,但仍然有相当多的内水,由于水的汽化吸热相当大,如果在燃烧过程中这部分水分蒸发,就会使炉内温度场受到一定的影响甚至影响到燃烧的稳定。因此在燃烧之前将这部分内水分解出来就是十分必要的。
3、2、1在BASIC垃圾焚烧炉炉膛的进口位置,设置了一个垃圾干燥架,主要就是为了将垃圾中的内水分解出来的装置。垃圾送进焚烧炉后,不是直接送进炉排表面,而是先放置在干燥架上。在这里,垃圾通过两种方式来除去内水。一是接受炉膛的辐射热;由于炉膛内有一定的温度场分布,必然有一部分热量辐射到新进入的垃圾表面,当达到一定温度后部分水分就会蒸发,并随烟气流出焚烧炉炉膛,进入后部的余热锅炉等设备的烟道中。二是接受干燥风的对流换热;单凭炉膛辐射热是不能将垃圾中的水分彻底分离出来的,因此在BASIC焚烧炉中,还设置有一个垃圾干燥系统来进一步在燃烧前分离水分。
3、3炉排结构设计特点
3、3、1对BASIC焚烧炉来说,采用了较大的炉排面积来减低热灼减率。为此,使热量集中也是一个相当重要的环节。该炉型的炉排结构采用的是六级阶梯形,由炉排两侧向中间逐级向下,并且各个阶梯也有一定向下的倾斜度。这样,随着炉排的抛动,垃圾在向下一级炉排抛出的过程中,也随着垃圾减容,向中间汇集。在配风上,也是有中间的空气量大于两边空气量的趋势,因此垃圾能够不断减少,并集中,在炉排中部强化燃烧,这样的效果。所以,在炉排中部的传热、传质是最强烈的。炉膛其它位置的温度相对炉排中间位置的温度要低一些,但这并不影响垃圾的燃烧完成。垃圾在从一级炉排落入另外一级炉排的时候,能够变的非常疏松,这样使内部的垃圾也能充分接触新鲜空气,在内部燃烧,这样也可以使整个主要热量集中在待燃烧的垃圾中,提高垃圾的燃烧速度和燃烧效率。
3、3、2马丁炉往复逆推+顺推式机械炉排。逆推式炉排呈倾斜布置,垃圾依靠自身的重力作用在炉条逆向推动时翻转并沿炉床向前移动,炉排与水平面成26 0C夹角。炉床的宽度350吨/日的炉排宽约6米,而炉床的长度则决定于垃圾的质量和对灰渣热灼量的要求,有9段、11段、13段和15段等系列设计,采用15段的炉床长约9.5米,由于炉条的逆向推送使垃圾容易着火燃烧,并延长了垃圾在炉床上的停留时间。炉排以列为单元,根据炉排的宽度分成两列、三列或四列,列间设置固定的分隔带,每列固定炉条与活动炉条相间排列,各列活动炉条分别由油缸单独驱动,按燃烧控制装置的指令和程序协同动作。炉排的动作包括:各列给料器的往复运动;各列逆推+顺推式机械炉排的往复运动;出渣机的往复运动以及料门的开闭。这些运动都是由油缸分别驱动,由液压站集中控制。根据燃烧的要求,由燃烧控制盘的可编程序控制器(PLC)发出指令,使各动作按照预定的程序依次进行,实现燃烧过程的自动控制。炉排的炉床由众多的炉条组成,垃圾的燃烧过程是在炉床上进行,炉条的运动使垃圾移动和翻拌,由于炉条的工作条件比较恶劣,容易磨损或烧坏,是机械炉排的易损件。炉条的头部作有各种形状的凸台,炉条作往复运动时使炉床上的垃圾得到均匀的搅拌和翻转,对于燃烧时产生表面固化的垃圾团还有破碎的作用,让垃圾得到足够的空气进行燃烧,利于燃烬。炉排用高铬耐热、耐磨铸铁制造,材质性能较为优异,结构上也有独到之处,炉条的筋板作成封闭的一次风通道,利用一次风的高速流动将炉条的热量带走,起到散热翅片的作用,有效地降低炉条的工作温度,从而延长了炉条的使用寿命。
参考文献:
1、晋江市垃圾焚烧发电综合处理厂可行性研究报告
2、 顺能垃圾发电厂建设方案
3、龙岗中心城市垃圾焚烧发电厂建设方案
4、深圳汉氏固体废物处理厂建设项目方案
哈韩国际服饰