当前位置:首页 » 创新创业 » 红外光谱创新

红外光谱创新

发布时间: 2022-07-09 12:18:47

1、新药的开发研制过程是怎样进行的?

新药研制主要分新药临床前研
究和新药临床研究两个过程。
l   新药临床前研究内容
药学研究
药理学研究
毒理学研究
一、药学研究主要内容
⑴ 原料药生产工艺研究
⑵ 制剂处方及工艺研究
⑶ 确证化学结构或组分研究
⑷ 质量研究:包括理化性质、纯
度检查、溶出度、含量测定等

⑸ 质量标准草案及起草说明
⑹ 稳定性研究
⑺ 临床研究用样品及其检验
报告
⑻ 产品包装材料及其选择依据
二、新药药理毒理学研究
1.药理学内容:
①药效学试验:
主要药效学试验
一般药理学试验;
②药动学试验。
2.主要药效学研究
1) 药效学试验:应以动物体内试验
为主,必要时配合体外试验,从
不同层次证实其药效。
2) 观测指标:应选用特异性强、敏
感性高、重现性好、客观、定量
或半定量的指标进行观测。

3)实验动物:根据各种试验的
具体要求,合理选择动物,对
其种属、性别、年龄、体重、
健康状态、饲养条件、动物来
源及合格证号等,应有详细记
录。

5) 给药剂量及途径
⑴ 试验分组:各种试验至少应设
三个剂量组,剂量选择应合理,尽
量反映量效和/或时效关系,大动
物(猴、狗等)试验或在特殊情况
下,可适当减少剂量组。
⑵ 给药途径:应与临床相同,如
确有困难,也可选用其他给药途径
进行试验,但应说明原因。

6)对照:主要药效学研究应设对照
组,包括:
⑴ 正常动物空白对照组;
⑵ 模型动物对照组;
⑶ 阳性药物对照组(必要时增设
溶媒或赋形剂对照组)。阳性对照药
应选用正式批准生产的药品,根据需
要设一个或多个剂量组。
3.一般药理学研究
主要观察给药后对动物以下三个系统的影响:
⒈)神经系统:活动情况、行为变化
及对中枢神经系统的影响。
⒉)心血管系统:对心电图及血压等
的影响。
⒊)呼吸系统:对呼吸频率、节律及
幅度的影响。

须设2~3个剂量组,低剂量
应相当于药效学的有效剂量;给
药途径应与主要药效学试验相同,

4.药动学研究
对有效成分明确的第一类新药,
可参照化学药品的药动学方法,研
究其在动物体内的吸收、分布、代
谢及排泄,并计算各项参数。
5.毒理学研究 Toxicology Study
1)急性毒性(Acute toxicology)
2)慢性毒性(Chronic toxicology)
3)特殊毒性(Special Test)

半数致死量
Lethal Dose 50 (LD50)
最大耐受量
Maximal Resistance Experiment

1)急性毒性试验
(1)LD50测定选用拟推荐临床试验
的给药途径,观察一次给药
后动物的毒性反应并测定其
LD50。

水溶性好的一、二类新药应测定
二种给药途径的LD50。给药后至少
观察7天,记录动物毒性反应情况、
体重变化及动物死亡时间分布。对
死亡动物应及时进行肉眼尸检,当
尸检发现病变时应对该组织进行镜
检。

2)最大给药量试验
如因受试药物的浓度或体积限制,
无法测出半数致死量(LD50)时,可
做最大给药量试验。试验应选用拟推
荐临床试验的给药途径,以动物能耐
受的最大浓度、最大体积的药量一次
或一日内2~3次给予动物。

(如用小白鼠,动物数不得少于
20只,雌雄各半),连续观察7天,
详细记录动物反应情况,计算出
总给药量(折合生药量g/kg)。

3)长期毒性试验
长期毒性试验是观察动物因连
续用药而产生的毒性反应及其严重
程度,以及停药后的发展和恢复情
况,为临床研究提供依据。

长期毒性实验条件 Conditions for Chronic Experiment
⑴ 动物 (Animals)
⑵ 剂量 (Dosage)
⑶方法与给药途径
(Methods and route of administration)
⑷ 实验周期(Experimental cycle)

治疗局部应用的药物 Drugs for local application
治疗局部疾患且方中不含毒性药
材或有毒成分的第三、第四类外用药,
一般可不做长期毒性试验。
但需做局部刺激试验、过敏试验,
必要时需做光敏试验。

可能影响胎儿或子代发育的药物,
除按一般毒理学要求进行试验外,
还应增做相应的生殖毒性试验
(reproctive experiment) 。

特殊毒性实验(Special Test)
致癌实验(Carcinogenesis test)
genetic mutation
致突变实验(Mutagenesis test)
cancer inction
致畸癌实验(Teratogenesis test)
congenitally deformed baby or
congenital malformation
Drug dependence Test: addiction
进行临床研究应具备的条件
申报临床研究并获得国家食品药品监督
管理(SFDA)局批准
Application for Clinical Study
Approval by CDA
获得伦理委员会批准
Supervised by Ethic Council
新药临床实验 Clinical Study of New Drugs
临床试验(Clinical Trials)
生物等效性试验
(Bio-equivalent Study)
临床试验分期 Clinical trials
I 期
II期
III期
IV期

I期临床试验
为初步的临床药理学及人体安全性评价试验,主要观察人体对新药的耐受性(tolerance)和药动学规律,为制定给药方案提供依据。

Biological equipotent
experiment 生物等效性试验

II 期临床试验
为随机盲法对照临床试验,主要对新药有效性及安全性作出初步评价,并推荐临床给药剂量。
III期临床试验
为扩大的多中心临床试验,
应遵循随机对照原则,进一步评
价新药的有效性和安全性。
IV期临床试验
为新药上市后的监测,在广
泛使用条件下进一步考察新药的
疗效和不良反应(尤其注意罕见
的不良反应)。

临床研究要求Principle Require
⒈获得国家食品药品监督管理(SFDA)
局批准
⒉符合国家药品监督管理局《药品临
床试验管理规范》的有关规定。
⒊临床研究的病例数应符合统计学要
求。

4.在SDA确定的药品临床研究基地中
选择临床研究负责和承担单位
⒌ 临床研究单位应了解和熟悉试验用
药的作用和安全性,按GCP要求制
定临床研究方案。
⒍ 应指定具有一定专业知识的人员遵
循GCP的有关要求,监督临床研究
的进行。

⒎ 不良事件(Adverse events )
临床研究期间若发生严重不
良事件,须立即采取必要措施
保护受试者安全,并在24小时
内向当地省级药品监督管理部
门和国家药品监督管理局报告。

⒏ 临床研究完成后,临床研究单
位须写出总结报告,负责单位
汇总,交研制单位。

有关试验和具体要求
⒈ 耐受性试验
受试对象、受试例数、分组、
确定初试剂量
⒈ 耐受性试验
⑴ 受试对象:应选择健康志愿者,
特殊病证可选轻型患者。健康状况
须经健康检查,除一般体格检查外,
尚要做血、尿、粪便常规化验和心、
肝、肾功能检查,并应均属正常。

要注意排除有药物、食物过敏史者。
对妊娠期、哺乳期、月经期及嗜烟、
嗜酒者亦应除外。还应排除可能影响
试验结果和试验对象健康的隐性传染
病等。

受试例数20~30例,以18~50岁为宜,
男女例数最好相等。
⑵ 分组:在最小初试剂量与最大初试
剂量之间分若干组。
⑶ 确定初试剂量:最小初试剂量一般
可从同类药物临床治疗量的1/10开
始。
⒉ 药动学研究
⑴ 可与耐受性试验结合进行
⑵ 质控要求:检测方法应灵敏度
精、专属性强、回收率高和重
现性好。

药品不良反应
(adverse drug reaction,ADR)
不良事件
(adverse event)
药品不良反应和不良事件 的判断与处理
⑴ 药品不良反应
(adverse drug reaction,ADR)
指在规定剂量正常用药过程中所产
生的有害而非期望的、与药品应用有
因果关系的反应。

在一种新药或药品新用途的
临床试验中,如治疗剂量尚未确
定时,所有的有害而非期望的、
与药品应用有因果关系的反应,
也应视为药品不良反应。

⑵ 不良事件(adverse event):
病人或临床试验受试者接受一种药
品后出现的不良医学事件,但并不
一定与治疗有因果关系。

⑶ 严重不良事件
(serious adverse event):
临床试验过程中发生需住院治疗、
延长住院时间、伤残、影响工作能
力、危及生命或死亡、导致先天畸
形等不良事件。

⑷ 药品不良反应分类
临床试验中药品不良反应分临
床反应和化验异常两部分。
临床反应常分为A、B、C三型。

①A型反应:由药物药理作用过强或
与其他药物出现相互作用所引起。
临床试验中观察、检查和评价的主
要是A型反应,其评价方法与上市
后监测药物不良反应的方法相似,
都是通过所发现的反应与所用药物
之间的因果分析来评定反应与药物
是否有关。

② B型反应:又称特异反应,可危
及生命且不能预测,一旦发生,
需立即向主办单位与药政管理
部门报告。
③ C型反应:常以疾病形式出现,在
新药试验中不易被察觉,常通过流
行学研究发现。
药品不良反应的评价标准
①五级标准:
有关 / 很可能有关 / 可能有关 /
可能无关 / 无关
用前二种相加来统计不良反应发生率。

②七级标准:
有关/很可能有关/可能有关/不大可能有关/可能无关/无关/无法评价。

如何确定不良事件与药物存在因果关系
①用药与出现不良事件的时间关系以
及是否具有量效关系
②停药后不良事件是否有所缓解
③在严密观察并确保安全的情况下,
观察重复给药时不良事件是否再次
出现等。
⒋临床试验设计原则Principle of clinical trials
随机性(randomization)
合理性(rationality)
重复性(replication)
代表性(representativeness)

⑴ 随机性:两组病人的分配均匀,不
随主观意志为转移。
⑵ 合理性:既要符合专业要求与统计
学要求,又要切实可行。
⑶ 代表性:受试对象的确定应符合样
本抽样符合总体的原则。
⑷ 重复性:经得起重复验证。排除系
统误差。
⒌ 对照试验
⑴ 平行对照试验:
随机分组对照试验,最常用的是试
验药A与对照药B(或安慰剂)进行
随机对照比较。
⑵ 交叉对照试验:
拉丁方设计(latin square design)。

⒍ 设盲(blinding/masking):
使一方或多方不知道受试者治疗分配的一种程序。
双盲法试验(double blind technique)
⒎ 安慰剂(placebo)
安慰剂是指没有药理活性的物质如乳
糖、淀粉等,常用作临床对照试验中
的阴性对照。
安慰剂可引起疗效(正效应)和不良
反应(负效应)。镇痛、镇静止咳等
的有效率平均可达35.2%土2.2%。

分类:
纯安慰剂:无药理活性
不纯安慰剂:指作用不强的药物,
有时起安慰剂的作用。
安慰剂效应(placebo effect)

⒏ 疗效判断
临床疗效评价(response assessment)
公认标准采用四级评定。
痊愈(cure)
显效(excellence)
好转(improvement)
无效(failure)
痊愈率+显效率=有效率(%)。
⒈ 药品临床前试验管理规范 (good laboratory practice,GLP)
GLP是对从事实验研究的规划设计、执行实施、管理监督和记录报告等实验室组织管理、工作方法和有关条件所提出的法规性文件。它主要是针对有关药品、食品添加剂、农药、化学试剂、化妆品及其他医用物品的动物

毒性评价而制定的法规,目的在
于严格控制药品安全性评价的各
个环节,包括严格控制可能影响
实验结果准确性的各种主、客观
因素,如保证实验研究人员具备
一定素质、实验设计慎密合理、
各种实验条件合格、数据完整准
确以及总结资料科学真实等。

2. 药品临床试验管理规范
(good clinicaI practice,GCP)
GCP的核心是保障受试者与患者的权利,保证临床试验的科学性。这些规范规定了临床试验的有关各方,即申办者、研究者及管理当局在临床试验中的职责、相互关系和工作方式。

3. 药品生产质量管理规范
(good manufacture practice, GMP)
GMP是为生产出全面符合质量标准的药品而制定的生产规范,它由硬件和软件组成,其实施包括药品生产的全过程,从对原料、制剂一直到销售、退货以及药品管理部门

全体人员应具备的条件等都做了详细的规定。原料药的制作与制剂在实质上有一定差别,但GMP要求基本精神要一致。

⒋ 药品供应质量管理规范
(good supply practice,GSP):
GSP是为保证药品在运输、贮存
和销售过程中的质量和效力所
制定的管理规范。

⒌ 道地药材生产规范
(good organic practice,GOP)
GOP是关于大宗药材基地化和集约化的
生产管理规范,目前正进行GOP基础研究,
争取到2010年,使100种最常用道地药材
的质量稳定在高标准水平上,基本消灭
次、劣品;使出口值排在前10位的药材
达到国际无公害药材(Organic)水平。
国家基本药物 Essential Drugs in China
1985年,WHO在内罗毕会议上扩展
了基本药物的概念,使其包括了高度重
视合理用药的内容,同时,在推荐基本
药物目录遴选程序时,还把基本药物的
遴选过程与标准治疗指南以及国家处方
集结起来,也就是使基本药物与合理用
药相结合。

我国的国家基本药物是从我国临床应用
的各类药物中,经科学评价而遴选出的
具有代表性的药品,无论从疗效、不良
反应、价格和质量,还是从稳定性、使
用方便性和可获得性等方面,都是同类
药物中最佳的;是在经济条件允许的情
况下,治疗某种病症的首选药品,它必
须能满足大部分人口卫生保健的需要。
处方药与非处方药
⒈ 处方药(prescription drug)
⑴ 刚上市的新药:对其活性和副作用
还需进一步观察;
⑵ 可产生依赖性的药品:如吗啡类镇
痛药及某些催眠安定药;
⑶ 本身毒性较大的药品,如抗癌药等;

⑷ 用药时要经医生开处方并在其指
导下使用,或治疗需实验室确诊
的某些疾病的药品,如治疗心血
管疾病的药品。

国家非处方药遴选原则
应用安全、疗效确切、
质量稳定,使用方便。

⒉ 非处方药(Over the counter, OTC)
OTC多治疗诸如感冒、发烧、咳
嗽、消化系统疾病、头痛、关节疾
病、过敏症(如鼻炎)等疾病;它
还包括营养补剂如维生素、中药补
剂等药品,大多安全而有效。

甲类非处方药的零售企业必须具有
《药品经营企业许可证》。经省级
药品监督管理部门或其授权的药品
监督管理部门批准的其它商业企业
可以零售乙类非处方药。

零售乙类非处方药的商业企业必
须配备专职的具有高中以上文化
程度,经专业培训后,由省级药
品监督管理部门或其授权的药品
监督管理部门考核合格并取得上
岗证的人员。

使用注意:因非处方药不需要凭执业
医师或执业助理医师处方,消费者即
可按药品说明书自行判断、购买和使
用,为此,对部分品种除规定了使用
时间、疗程外,还强调遇到某些情况
时应向医师咨询等。

The End

2、传感器和执行器的发展趋势是传感器和执行器的发展趋势是

最初开发的传感器主要用于物理量的探测:如冲击、压力,后来用于测量加速度和旋转。随着研发投入增加,MEMS从对物理量的探测扩展到对光的感应和操控(如MEMS微镜),再进一步扩展到非制冷红外传感器(如微辐射热计)。从对光的感应到对声音的感应,MEMS麦克风掀起了下一波MEMS浪潮。MEMS和传感器正在进入令人兴奋的全新演变阶段,因为它们超越了人类感官,向超声波、红外和高光谱传感方向发展。

当我们的身体或情绪感知在某种程度上受到限制时,传感器却能弥补我们的不足。超越人耳的MEMS麦克风已经用于听障人士。亚利桑那州立大学的研究人员正在开发人工耳蜗植入物——压电MEMS传感器,有朝一日可能会使那些听力受损严重的人士恢复听力。

声学传感器将是下一代创新的推动者
斯坦福大学的研究人员正在合作研究硅基视网膜植入物,将成为视力障碍者的福音。Pixium Vision已于2017年开始使用硅基视网膜植入物进行人体临床试验。

未来,人类使用下一代传感器进行情感或心理感应将不再是科幻小说里的情节。感知技术有很多用途,甚至可能帮助自闭症谱系患者更容易地理解他人情绪。

通过分析,我们总结出MEMS发展的三个阶段:

1. 最初几年,使用简单的传感器来探测冲击力,称为“探测时代”(Detection Era)。

2. 当传感器不仅可以感知和探测,还可以测量(例如旋转)的时期,称为“测量时代”(Measuring Era)。

3. 当我们越来越多地使用传感器来对周围环境进行测绘,“全局感知意识时代”(Global-Perception Awareness Era)出现了。我们使用激光雷达为自动驾驶汽车进行3D成像,使用环境传感器监控空气质量,使用加速度计或超声波识别手势,使用指纹和人脸识别传感器实现生物测量。随着多参数传感器融合和人工智能,这一切将变为现实。

3、单色红外测温仪和双色红外测温仪有什么区别吗?

通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,为工作和研究提供判断依据。我们常用的热像仪属于被动热像测试,很安全。红外线根据大气窗口,分为近红外、短波红外、中波红外、长波红外。长波红外可以透过空气观测,不能透过墙壁和玻璃观测,并且具有全天候成像、非接触测温、透烟雾观测的优势。
如果想要了解更多红外热像仪相关的原理、产品和案例介绍,或者想要工程师免费上门演示,可以找上海热像科技股份有限公司,旗下品牌“FOTRIC 飞础科”。
FOTRIC十年专注于红外热成像专业测温领域并持续创新,手持式、在线式、体温筛查型等产品线一应俱全,100+丰富产品型号供选择,具有1000+各种细分行业的丰富应用案例。
该公司是一家高新技术企业,总部位于中国上海,同时在北京、无锡、南京、济南、西安设有办事处,在北美、欧洲、韩国、新加坡、澳大利亚等三十多个国家和地区设有分销商,已通过了国际ISO:9001质量体系认证、美国FCC认证、欧洲CE认证。同时公司致力于热像技术的智能化创新,产品被广泛应用在电力、工业、钢铁、石化、电子、科研等行业,得到国家电网、中石化、宝钢、华能、华电、上汽等10000+工业客户的认可,实力厂家值得信赖。

4、红外光谱主要用于哪几方面,哪些领域的研究和分析?红外光谱法有什么特点

红外光谱(IR)分析技术是一种高效、快速的现代分析技术。它综合运用了计算机技术、光谱技 术和化学计量学等多个学科的最新研究成果,以其独特的优点适合于有机物、无机物、聚合物、蛋白质二级结构、包裹体、微量样品的分析,OMNIC光谱库可快速辨别未知样品,它包括了9000种光谱图和创新的多成分搜索路径,对未知物样品以及混合物样品光谱可以进行谱库检索,对混合物样品可以进行剖析。红外光谱技术包括透射技术和反射技术, ATR是全反射红外光谱,当样品的透光率很低时,用此法比较简单;压片做红外适合那些粉末状或易制成粉末状的样品,还要保持一定的透光率。ATR(attenuated total refraction,衰减全反射),作为红外光谱法的重要实验方法之一,由于其并不需要通过透过样品的信号,而是通过样品表面的反射信号获得样品表层有机成份的结构信息,极大地扩大了红外光谱法的应用范围。使许多采用传统透过法无法制样,或者样品制各过程十分复杂、难度大、而效果又不理想的实验成为可能。尤其在橡胶,塑料,纤维,胶黏剂,等高分子材料制品表面成分分析、无损检测得到广泛的应用。

5、红外热成像仪能够应用到森林防火等领域吗?

可以应用
深圳云感物联森林防火智能监控系统是采用“边缘计算+AI”技术,在前端利用双光谱热成像视频监控技术结合智能化的烟火识别技术,对数公里范围内的森林资源进行监测,通过智能化的森林防火预警手段,不仅可以实时监看和记录森林资源情况,而且采用了智能化的监测机制,通过智能化设备自动完成对森林资源的火灾监测和报警,辅助森林防火监测人员完成对森林资源的自动监测,是一种由传统的人工监测转变为由机器自动监测的智能化科技手段。
系统通过在瞭望或立杆设施基础上,采用可见光和红外热成像智能双光谱识别系统、摄像机、长焦镜头及后端监测管理软件实现对森林防火区域可视范围内火情的“自动扫描、自动发现、自动报警、自动定位”。双光谱识别系统能够克服雾霾天气对可见光摄像机成像的影响,以及红外摄像机抗遮挡能力差、图像不直观等单一智能识别系统存在的缺点,提高林火智能识别能力,达到全年、全天候的高效智能识别预警。
系统全天候24小时自动对前端林区进行扫描,当前林区出现火情时,系统会自动识别火情并向后端监控中心发送报警信号,同时会将火点位置在地图上精确定位,一旦火灾确定,决策人员可以通过视频追踪、资源查询、火情推演、预案管理等功能进行扑救会商并制定详细的灭火作战方案,然后将灭火作战方案下发至各个执行单位,决策人员还可通过系统对人员、车辆、物资、通讯设备等进行指挥调度达到快速消灭火灾的目的。

6、北京市第一七一中学的设施设备


动物、微生物实验室建于2008年,实验室现有实验仪器设备总价值为60万元。实验室面积为60平方米,可容纳30名学生同时实验。
实验室主要仪器有生物显微镜、自动控制发酵罐、台式恒温振荡器、生化培养箱、蒸汽消毒器、干燥箱、超净工作台、PCR仪、凝胶成像系统等分子生物学相关仪器。有专用无菌操作室和生物安全柜。
动物、微生物实验室可承担部分高中学生生物学的实验教学任务及同时,本实验室对全校学生开放,包括学生第二课堂活动、创新活动、学生创业实践活动等,为学生的创新项目的科学研究开展工作提供了良好的平台。
分子生物学实验。 简介
我校物理数字化实验室是以传感器为主要仪器的现代化实验室。该实验室的创建充分体现出学校“有层次,无淘汰”的教育理念。为不同层次、不同年龄的同学提供适合其学习和应用的数字化平台。实验室配备了威尼尔 (Vernier)系列传感器。其中有双范围力传感器,表面温度传感器,光传感器,电流传感器,相差电压传感器,光闸等。数字化实验室将帮助学生进行更精密的实验探究,协助教师打造出更加“精心,精细,精品”的物理课堂。下面对一些仪器进行简单介绍。
双范围力传感器
双范围力传感器是一个通用的测量力的仪器,它可以代替一般的手提弹簧计,安装在一个环形支架上。也可以安装在动力小车来研究碰撞。它能测量拉力和推力。很小的力如0.01牛顿至很大的力如50牛顿都可以测量。这个双范围力传感器可以在多个实验中使用,包括:探讨碰撞中力和冲量;探讨简谐运动;监测摩擦力;探讨胡克定律;监测模型火箭发动机的推力;测量动力小车的力同时监测加速度;测量简单机器拉起一个已知道重量的质量所需的力;测量液氮的气化热。
表面温度传感器
表面温度传感器:表面温度传感器只能在空气中使用。在苛刻环境中测量温度就需要一个耐久的探头,表面温度传感器的典型用途包括:皮肤温度测量;人类呼吸研究;特殊的热实验;热传递实验;摩擦力和能量研究。
光传感器
光传感器:光传感器可用于测量多种环境中的光强。包括一些反射光强实验的案例中。使用点光源进行倒平方光强实验;偏光滤光片研究;验证荧光灯和其他灯的闪烁;太阳能的研究;反射率的研究;研究房屋或学校不同区域的光强;测量光强作为研究植物生长的一个部分。
电流传感器
电流传感器:电流传感器设计用于研究电学的基本原理。此传感器能应用于低电压的直流和交流电状况下的电流测量。在 ±0.6A 的范围中,此系统非常适合应用于大多数的“电池与灯泡”电路。如果与电压传感器一起使用 (型号:DVP-BTA),可以研究欧姆定律、无功部分的相位关系等。多个传感器同时使用,可以研究并联和串联电路。它也可以应用于电化学实验。此传感器与威尼尔的电流和电压探测系统的基本特性相同。
相差电压传感器
相差电压传感器:相差电压传感器是用来探讨电学的基本原理而设计的。用相差电压传感器来测量低电压的交流和直流电路上的电流。它的±6.0伏特的范围最适合 “电池和灯泡” 的电路。配合电流传感器 (DCP-BTA) 来探讨欧姆定律、无功能部分的相关系和其它。这个传感器与随你的界面 (如LabPro) 附送的电压传感器不同在它的两个探针都没有与地连接。可以使用多个传感器来探讨串联和并联电路。这个传感器的特性与威尼尔以前的电流和电压探测系统的电压探测器一致。
光闸
光闸:这个通用光闸可以在多个物理实验上使用。一些例子包括:测量重力下的加速度;研究钟摆的摆动;测量滚动物体的速度;替一个转动的物体计周期的时间;测量碰撞物体的前后速度。 构成
北京市第171中学创新实验室包括生化测量实验室(Biology & Chemistry Basic Measurement Lab)、微生物实验室(Microbiology Lab)和数学、物理实验室即数字化物理实验室 (Micro-computer Based Physics Lab)。
生化测量实验室
生化测量实验室具有:气相色谱分析仪、COD测定仪、BOD测定仪、水质分析仪、精密电子天平、数字式测温仪、数字式pH计、导电仪、色差计、紫外光谱仪、浊度计等多种现代化、高性能的实验设备。生化测量实验室可以开展:用质谱法测定相对分子质量;用红外光谱、核磁共振氢谱等方法鉴定分子结构;用化学方法或红外光谱法检验卤代烷中的卤素;用中和滴定法或气相色谱法测定醋酸中醋酸的含量等多项实验,在此基础上还可进行水质测量、空气质量检测、食品安全检测等方面的创新实验研究。
微生物实验室
微生物实验室的主要设备有:发酵罐、生物安全柜、超净工作台、CO2培养箱、厌氧培养箱、PCR仪、核酸/蛋白质凝胶图像分析系统、数码显微镜、低温冰箱、全温振荡器、冷冻高速离心机、电泳仪等现代化高科技实验设备。实验室可以进行微生物的培养,微生物代谢产物的生产与分离,食品及饮用水微生物指标检测,动物细胞培养,植物组织培养,DNA的提取与鉴定,DNA分子杂交,PCR方法诊断疾病、转基因食品中外源基因的检测等。 数理实验室的基本系统结构为 “传感器 + 数据采集器 + 计算机”。配备了最新的传感器设备,以一系列传感器替代了传统的测量仪器,能够完成涵盖理科内容的多学科实验任务。例如力、热、声、光、电、位移、磁感强度、辐射等多种物理量数据的采集,传感器数据通过采集器处理后上传到计算机,由教学软件进行实时的处理与分析,以实现数据的实时采集,它的特点是科技含量高,实时采集数据,误差小,实验耗时短,利用软件可以对数据进行多种分析。数理实验室种类众多的传感器运用可以增强学生的实践体验,信息化的实验手段可以拓展学生探究日常生活的能力,从而能激发学生探究的欲望,强大的数据处理能力和开放的平台有利于学生通过努力发现问题寻找规律,有利于学生将所掌握的信息技术知识引入实验中,同时也为学生的科技创新活动提供创新实验平台。根据新课程选修模块的要求及我校开展研究性学习、学生创新实验的需要,组建了生化测量实验室,这些现代化实验仪器的使用,使实验操作省时省力,实验数据得到及时处理,实验结果形象直观,实验信息充分共享,使实验教学活动更具有研究性、更能联系实际,从而拓宽了化学实验的选材范围。组建微生物实验室的目的是使学生在中学时代就能接触到生物学研究最前沿的内容,使学校生物科技教育与现代科技发展接轨,培养学生对生物科学的兴趣,并使其成为教师开设选修课、指导生物实验、探究和研究性学习活动的基地。

7、波谱分析的进展

从19世纪中期至现在,波谱分析经历了一个漫长的发展过程。进入20世纪的计算机时代后,波谱分析得到了飞跃的发展,不断地完善和创新,在方法、原理、仪器设备以及应用上都在突飞猛进。 四谱是现代波谱分析中最主要也是最重要的四种基本分析方法。四谱的发展直接决定了现代波谱的发展。在经历了漫长的发展之后四谱的发展以及应用已渐成熟,也使波谱分析在化学分析中有了举足轻重的地位。
1.1. 紫外-可见光谱
20世纪30年代,光电效应应用于光强度的控制产生第一台分光光度计并由于单色器材料的改进,是这种古老的分析方法由可见光区扩展到紫外光区和红外光区。紫外光谱具有灵敏度和准确度高,应用广泛,对大部分有机物和很多金属及非金属及其化合物都能进行定性、定量分析,且仪器的价格便宜,操作简单、快速,易于普及推广,所以至今它仍是有机化合物结构鉴定的重要工具。近年来,由于采用了先进的分光、检测及计算机技术,使仪器的性能得到极大的提高,加上各种方法的不断创新与改善,使紫外光谱法成为含发色团化合物的结构鉴定、定性和定量分析不可或缺的方法之一。
1.2.红外光谱
1947年,第一台实用的双光束自动记录的红外分光光度计问世。这是一台以棱镜作为色散元件的第一代红外分光光度计。到了20世纪60年代,用光栅代替棱镜作为分光器的第二代红外光谱仪投入实用,由于它分辨率高,测定波长的范围宽,对周围环境要求低,加上新技术的开发和应用,使红外光谱的应用范围扩大到络合物、高分子化合物和无机化合物的分析上,并且可以储存标准图谱,用计算机自动检索。20世纪70年代后期,第三代即干涉型傅里叶变换红外光谱仪投入使用。此种光度计灵敏度、分辨率高,扫描速度快,是目前主要机型。近来,已采用可调激光器作为光源来代替单色器,研制成功了激光红外分光光度计,也就是第四代红外分光光度计,它具有更高的分辨率和更广的应用范围。但目前尚未普及。
1.3.核磁共振
自1945年F.Bloch和E.M.Purcell为首的两个研究小组同时独立发现核磁共振现象以来,1H核磁共振在化学中的应用已有50年了。特别是近20年来,随着超导磁体和脉冲傅里叶变换法的普及,核磁共振的新方法、新技术不断涌现,如二维核磁共振技术、差谱技术、极化转移技术及固体核磁共振技术的发展,是核磁共振的分析方法和技术不断完善,应用范围日趋扩大,样品用量减少,灵敏度大大提高。
1.4.质谱
早在1912年左右,J.J.Thomson就制成 了第一台质谱装置,并用其发现了20Ne和22Ne。早期,这种方法主要用于测定相对原子质量和发现新元素。在20世纪30年代,由于离子光学理论的建立促进了质谱仪的发展。20世纪40年代以后质谱法除用于实验室工作外,还用于原子能工业和石油工业。60年代开始,质谱就广泛地应用于有机物分子结构的测定。近几十年来,质谱仪也发展迅速,相继出现 了多种类型和多种用途飞质谱仪。 波谱分析除了四谱之外还有拉曼光谱、荧光光谱、旋光光谱和圆二色光谱、顺磁共振谱、X射线衍射法等。
由于不同的光谱都有其所长。目前拉曼光谱和红外光谱的联用已应用广泛,旋光光谱、圆二色光谱在测定手性化合物的构型和构想、确定某些官能团在手性分子中的位置方面有独到之处,因此也常和紫外光谱联用以达到更高要求的分析目的。

8、大学分析化学 红外光谱波数公式推导 1307怎么得到的?如图

特别关注和发展前沿交叉学科如功能材料、环境科学,课程的内容和安排注重学生的自学能力,已成为化学研究与人才重要培养的基地之一、科研经验,是带领各学科发展和培养高素质,化学系在学科建设、师资队伍建设。 1996 年和 1998 年正式建立 有机化学和物理化学 理科硕士点,同时鼓励学生在本科学习阶段参加一定的科研工作。每年有60%以上的本科毕业生在国内、外继续攻读硕士或博士学位,由我系编写的《有机化学》、《物理化学》和《无机化学》三套教材均是面向二十一世纪教材并获得国家及教育部级优秀教材奖,此外还有20多部其它教材分别由高等教育出版社、傅立叶变换红外光谱仪、紫外光谱仪、气相色谱仪、X-射线衍射仪等多台进口大型仪器、物理化学的博士授予权。每年招收化学专业本科生 60 名、实践能力和创新能力的培养,学生有较大的学习自主权,除学习化学的基础与专业知识外、支持和全系师生员工的努力下。我们热情地欢迎有志于在未来的化学领域耕耘的莘莘学子来我系学习。我们也热诚地希望,建立了一支高水平、高层次的科研队伍,一批勇于创新、年富力强的青年教师正在成为化学系发 展的生力军。
化学系现有化学一级学科的硕士授予权和有机化学,副教授 23 名,博士生导师 9 人。教授、有机化学、物理化学。复系 20 年来,在学校领导的关心、生命科学等 。 近五年来我系承担国家自然科学基金 11项, 天津市自然科学基金15多项,近年来我系在教学改革与研究。累计撰写教学研究论文 100多篇,获得了包括国家级教学成果二等奖(2001年)。
化学系拥有较雄厚的师资队伍,还可选修其它学科的相关课程、材料、环境,硕士生 70 名,博士生 20名。现有在籍本科生 240余 名,国际及国内横向合作100多项,发表研究论文800多篇,SCI检索论文190篇。
目前、化学工业出版社、副教授中硕士生指导教师 28 人,中青年教师中有博士学位的 30 名。他们都具有丰富的教学,并建有天津大学基础化学实验中心和天然高分子研究所。拥有包括高效液相色谱仪、气相-质谱联用仪、分析化学、应用化学 5个教研室、生物、医药、科学研究和人才培养等诸方面均取得了很大进步,化学系全系师生正在为把天津大学化学系建成国内一流的化学系而努力工作、科学出版社,硕士生、天津大学出版社等出版社出版、博士生 150 余名。化学系本科生培养具有较雄厚的化学基础的高素质人才。
天津大学化学系暨 国家工科化学基础课程教学基地 ,目前设有无机化学、天津市教学成果一等奖(2001年)等在内的高级别的教学成果奖。此外。本科生的教学实行学分制、能源、信息等)从事创新性的基础研究和应用研究的专门人才天津大学没有分析化学的硕士点,化学系 1983 年复建并招收“ 应用化学 ”专业的理科本科生、创新型人才的核心力量。其中,研究生培养能在化学及其相关领域(如化工。化学系在均衡发展化学各二级学科的基础上。
化学系的教学工作一直走在全国工科院校的前列, 2003 年建立 有机化学和物理化学理科博士点 以及 无机化学硕士点。
化学系也十分重视科研工作。 20年来通过人才引进与培养,楼主怎么想到一个工科学校学分析化学了?
天津大学化学系成立于 1951 年, 1952 年院系调整时并入天津大学化学工程系。为适应学科发展的需要、教材建设方面均取得了丰硕的成果,其中教授 19 名

9、红外测温是什么

自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、 红外线等专非可见光。自然界属中温度高于绝对零度(-273℃)的任何物体,随时都向外辐射出电磁波(红外线),因此红外线是自然界中存在最广泛的电磁波,并且热红外线不会被大气烟云所吸收。随着科技的日新月异,利用红外线这一特性,采用应用电子技术和计算机软件与红外线技术的结合,用来检测和测量热辐射。物体表面对外辐射热量的大小,热敏感传感器获取不同热量差,通过电子技术和软件技术的处理,呈现出明暗或色差各不相同的图像,也就是我们通常说的红外线热成像;将辐射源表面热量通过热辐射算法运算转换后,实现了热像与温度之间的换算。

10、分析化学的发展

古代人认识的元素,非金属元素有碳和硫,金属元素中有铜、银、金、铁、铅、锡和汞。
分析化学这一名称虽创自R.玻意耳,但其实践应与化学工艺同样古老。不能想象古代冶炼、酿造等工艺的高度发展,没有简单的鉴定、分析、制作过程的控制等手段。随后在东、西方兴起的炼丹术、炼金术可视为分析化学的前驱。
公元前3000年,埃及人已知称量的技术。最早出现的分析用仪器当推等臂天平,它记载在《莎草纸卷》(公元前1300)上。巴比伦的祭司所保管的石制标准砝码(约公元前2600)尚存于世。不过等臂天平用于分析,当在中世纪用于烤钵试金法(火试金法之一)中。
公元前4世纪,已知使用试金石以鉴定金的成色。
公元前3世纪,阿基米德在解决叙拉古王喜朗二世的金冕的纯度问题时,即利用了金和银密度之差,这是无伤损分析之先驱。
公元60年左右,老普林尼将五倍子浸液涂在莎草纸上,用以检出硫酸铜的掺杂物铁(Ⅲ),这是最早使用的有机试剂,也是最早的试纸。
1751年,J.T.埃勒尔·冯·布罗克豪森用同一方法检出血渣(经灰化)中的含铁量。 1663年,玻意耳报道了用植物色素作酸碱指示剂。但真正的容量分析应归功于法国J.-L.盖-吕萨克。
1824年,他发表漂白粉中有效氯的测定,用磺化靛青作指示剂。随后他用硫酸滴定草木灰,又用氯化钠滴定硝酸银。这三项工作分别代表氧化还原滴定法、酸碱滴定法和沉淀滴定法。络合滴定法创自J.von李比希,他用银(Ⅰ)滴定氰离子。另一位对容量分析作出卓越贡献的是德国K.F.莫尔,他设计的可盛强碱溶液的滴定管至今仍在沿用。他推荐草酸作碱量法的基准物质,硫酸亚铁铵(也称莫尔盐)作氧化还原滴定法的基准物质。 最早的微量分析是化学显微术,即在显微镜下观察样品或反应物的晶态、光学性质、颗粒尺寸和圆球直径等。
17世纪中叶,R.胡克从事显微镜术的研究,并于1665年出版《显微图谱》。法国药剂师F.A.H.德卡罗齐耶在1784年用显微镜以氯铂酸盐形式区别钾、钠。
1747年,德意志化学家A.S.马格拉夫用显微镜证实蔗糖和甜菜糖实为同一物质;
1756年,用显微镜检验铂族金属。
1865年,A.黑尔维希著《毒物学中之显微镜》。
1877年,S.A.博里基著《以化学/显微镜法作矿物与岩石分析》,并使用气体试剂(如氟化氢、氯)、氟硅酸和硫化铵与矿物及其切片作用。T.H.贝仑斯不仅从事无机物的晶体检验,还扩充到有机晶体。
1891年,O.莱尔曼提出热显微术,即在显微镜下观察晶体遇热时的变化。L.科夫勒及其夫人设计了两种显微镜加热台,便于研究药物及有机化合物的鉴定。热显微术只需一粒晶体。后来又发展到电子显微镜,分辨率可达1埃。
不用显微镜的最早的微量分析者应推德国J.W.德贝赖纳。他从事湿法微量分析,还有吹管法和火焰反应,并发表了《微量化学实验技术》一书。公认的近代微量分析奠基人是F.埃米希。他设计和改进微量化学天平,使其灵敏度达到微量化学分析的要求,改进和提出新的操作方法,实现毫克级无机样品的测定,并证实纳克级样品测定的精确度不亚于毫克级测定。有机微量定量分析奠基人是F.普雷格尔,他曾从胆汁中离析一降解产物,其量尚不足作一次常量碳氢分析,在听了埃米希于1909年所作的有关微量定量分析的讲演并参观其实验室后,他决意将常量燃烧法改为微量法(样品数毫克),并获得成功;1917年出版《有机微量定量分析》一书,并在1923年获诺贝尔化学奖。
常量操作如不适用于微量分析则需改进。例如,常量过滤是将沉淀定量移入滤纸锥中或过滤坩埚中。若用此法于微量沉淀过滤,则在原进行沉淀的烧杯壁所粘附的物质就不能再忽略不计了,所以必须改变办法。微量过滤采用滤棒吸出母液,而留全部沉淀于容器中。容器可用25毫升瓷坩埚,它兼用作称量器皿;还可在其内洗涤沉淀,然后再用滤棒吸出洗液。这样既可避免沉淀损失,又可简化操作手续。
无机化合物在滤纸上的行为在19世纪中已引起注意。德意志化学家F.F.龙格在1850年将染料混合液滴在吸墨纸上使之分离。更早些时候他用染有淀粉和碘化钾溶液的滤纸或花布块作漂白液的点滴试验。他又用浸过硫酸铁(Ⅲ)和铜(Ⅱ)溶液的纸,在其中部滴加黄血盐,等每滴吸入后再加第二滴,因此获得自行产生的美丽图案。1861年出现C.F.舍恩拜因的毛细管分析,他将滤纸条浸入含数种无机盐的水中,水携带“盐类”沿纸条上升,以水升得最高,其他离子依其“迁移率”而分离成为连接的带。这与“纸层析”极为相近。他的学生研究于“滤纸上分离有机化合物”获得成功,能明显而完全分离“有机染料”。
用滤纸或瓷板进行无机、有机物的检出是普雷格尔的贡献。方法简单而易行,选择性和灵敏度均高,点滴试验属微量分析范围。所著《点滴试验》和《专一、选择和灵敏反应的化学》两书,为从事分析者所必读。1921年后奥地利F.法伊格尔系统地发展了点滴试验法。
20世纪60年代,H.魏斯提出环炉技术。仅用微克量样品置滤纸中心,继用溶剂淋洗,而在滤纸外沿加热以蒸发溶剂,遂分离为若干同心环。如离子无色可喷以灵敏的显色剂或荧光剂。既能检出,又能得半定量结果。 色谱法也称层析法,基本上是分离方法。
1906年,俄国М.С.茨维特将绿叶提取汁加在碳酸钙沉淀柱顶部,继用纯溶剂淋洗,从而分离了叶绿素。此项研究发表在德国《植物学》杂志上,故未能引起人们注意。
1931年,德国R.库恩和E.莱德尔再次发现本法并显示其效能,人们才从文献中追溯到茨维特的研究和更早的有关研究,如1850年J.T.韦曾利用土壤柱进行分离;1893年L.里德用高岭土柱分离无机盐和有机盐。四年后D.T.戴用漂白土分离石油。
气体吸附层析始于20世纪30年代的P.舒夫坦和A.尤肯。40年代,德国Y.黑塞利用气体吸附以分离挥发性有机酸。英国E.格卢考夫也用同一原理在1946年分离空气中的氦和氖,并在1951年制成气相色谱仪(见气相色谱法)。第一台现代气相色谱仪研制成功应归功于E.克里默。
气体分配层析法根据液液分配原理,由英国A.J.P.马丁和R.L.M.辛格于1941年提出。由于此工作之重要,他们获得1952年诺贝尔化学奖。M.J.E.戈莱提出用长毛细管柱,是另一创新。
色谱-质谱联用法中将色谱法所得之淋出流体移入质谱仪,可使复杂的有机混合物在数小时内得到分离和鉴定,是最有效的分析方法之一。
液相色谱法包括液-液和液-固色谱,后两个名称之第一物态代表流动相,第二物态代表固定相。在大气压力下,液相色谱流速太低,因此须增加压强。这方面的先驱工作是P.B.哈密顿在1960年用高压液相色谱分离氨基酸。
1963年,J.C.吉丁斯指出,液相色谱法的柱效要赶上气相色谱法,则前者填充物颗粒应小于后者颗粒甚多,因此需要大压强,所用的泵应无脉冲。
1966年,R.詹特福特和T.H.高制成这种无脉冲泵。
1969年,J.J.柯克兰改进填充物,使之具有规定的表面孔度,再将固定相(如正十六烷基)键合在载体上,使之能抗热和抗溶剂分解。载体可用二氧化硅,键合通过Si-O-C或Si-C键。 薄层层析采用薄层硅胶等代替滤纸进行层析。由于硅胶颗粒均匀而细微,分离的速度和程度一般优于纸层析,分离无机物和有机物时与纸层析一样有效。
荷兰生物学家M.W.拜尔因克在1889年滴一滴盐酸和硫酸的混合液于动物胶薄层中部,盐酸扩散远些,在硫酸环之外另成一环,相继用硝酸银和氯化钡显示这两个环的存在。
9年后H.P.维伊斯曼用同样方法证明麦芽的淀粉酶中实含两种酶。
直至1956年联邦德国E.施塔尔改善涂布方法和操作,采用细颗粒(0.5~5微米)硅胶等措施,才使该法得到广泛使用。定量薄层层析始于J.G.基施纳等(1954)。他们最先测定橙柑属及其加工品中的联苯(见薄层层析)。 希腊哲学家泰奥弗拉斯图斯曾记录各种岩石矿物及其他物质遇热所发生的影响。法国H.-L.勒夏忒列和英国W.C.罗伯茨-奥斯汀同称为差热分析的鼻祖。
20世纪60年代,出现精细的差热分析仪和M.J.奥尼尔提出的差示扫描量热法,它能测定化合物的纯度及其他参数,如熔点和玻璃化、聚合、热降解、氧化等温度(见热分析)。
20世纪初,提出的热重量法是研究物质,如钢铁、沉淀等遇热时重量之变化。本多光太郎创制第一架热天平,它最初只用于解决冶金方面的问题。将它用于分析方面的当推 C.杜瓦尔。他曾研究过 1000多种沉淀的热行为。例如草酸钙用高温可灼烧为氧化钙,也可在约550°C灼烧为碳酸钙。二者作为称量形式,则以后者为佳,因灼烧时既省能量,换算因子值较大(因此误差较小),又免氧化钙在称量时吸潮。
电解时,铜(Ⅱ)在阴极还原而以单质(零价)析出,再进行称量,应归入重量法。此时可认为电子是沉淀剂。还有铅(Ⅱ)在阳极氧化,以二氧化铅形式附于阳极。前法在19世纪60年代分别由德意志C.卢科和美国J.W.吉布斯独立提出。 19世纪初,用于无机重量分析的有机试剂只有草酸及其铵盐和琥珀酸铵两种。前者用于钙、镁分离和钙的测定。后者用于沉淀三价铁使它与二价金属离子分离。
1885年,M.A.伊林斯基和G.von克诺雷提出1-亚硝基-2-萘酚作为镍存在时钴的沉淀剂,同时也是第一个螯合剂。至于阴离子测定,在20世纪初,W.米勒提出4,4-联苯胺作为硫酸根的沉淀剂。
1950年,中国梁树权等将有机试剂用于重量分析,测定钨酸根。
1950年,M.布希引入4,5-二氢-1,4-二苯基-3,5-苯亚氨基-1,2,4-三氮杂茂(简称硝酸根试剂)作为硝酸根沉淀剂。1975年后,它又成为高铼酸根的良好沉淀剂。
1950年,Л.A.楚加耶夫合成了丁二肟,并观察到它与镍(Ⅱ)形成红色沉淀。两年后,联邦德国O.E.布龙克把丁二肟试剂应用于钢中镍的测定。嗣后灵敏的和选择性高的新有机试剂不断出现。中国曾云鹗等合成3-(2-胂酸基苯偶氮)-6-(2,6-二溴-4-氯苯偶氮)-4,5-二羟基-2,7-萘二磺酸,用此试剂时,稀土元素的摩尔吸光系数可以高达0.98~1.2×10升/(摩·厘米)。 它是基于被测物质的分子对光具有选择性吸收的特性而建立起来的分析方法。包括比色分析法和紫外、可见分光光度法。测量某溶液对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到吸收光谱。根据各种物质所有的特殊吸收光谱,可进行定性分析和定量分析。
比色法以日光为光源,靠目视比较颜色深浅。最早的记录是1838年W.A.兰帕迪乌斯在玻璃量筒中测定钴矿中的铁和镍,用标准参比溶液与试样溶液相比较。
1846年,A.雅克兰提出根据铜氨溶液的蓝色测定铜。随后有T.J.赫罗帕思的硫氰酸根法测定铁(1852);奈斯勒法测定氨;苯酚二磺酸法测定硝酸根(1864);过氧化氢法测定钛(1870);亚甲基蓝法测定硫化氢(1883);磷硅酸法测定二氧化硅(1898)。分光光度计使用单色光和光电倍增管,波长范围为 220~1000纳米,比目视范围(400~700纳米)更宽。
用光照射悬浮液,从顶部观察,当视线与光线成直角时,称为比雾法;如果视线与光线在一条直线上时,称为比浊法。
18世纪50年代,G.J.马尔德在原子量测定中,利用了目测上层液体中氯化银悬浮液的亮度。随后,J.-S.斯塔改用一标准悬浮液作参比。
1894年,美国T.W.理查兹设计出第一台比雾计。比雾法最初用于观测原子量测定中母液中的氯(或溴)离子和银离子浓度是否达到当量。随后此法用于定量测定,其灵敏度很高,可测定一升水所含的3微克磷,或一升水所含的10微克丙酮。 红外光谱是有机化学家鉴别未知化合物的有力手段。红外光谱在20年代开始应用于汽油爆震研究,继用于鉴定天然和合成橡胶以及其他有机化合物中的未知物和杂质。70 年代,在电子计算机蓬勃发展的基础上,傅立叶变换红外光谱 (FTIR) 实验技术进入现代化学家的实验室,成为结构分析的重要工具。远红外光谱(200~10厘米)和微波谱(10~0.1厘米)是研究分子旋转的光谱法。
拉曼光谱(见拉曼光谱学是研究分子振动的另一种方法。早期拉曼光谱的信号太弱,使用困难,直至用激光作为单色光源后,才促进其在分析化学中的应用。拉曼光谱发展到现今已有采用傅立叶变换技术的FT-Raman光谱分析技术,共聚焦显微拉曼光谱分析技术,表面增强拉曼效应分析技术等,在生物医学分析、 文物分析、宝石鉴定、矿物分析等领域有重要的作用。 1672年,I.牛顿在暗室中用棱镜分日光为七色,这就是原子发射光谱法的始祖。
1800年,F.W.赫歇耳发现红外线。次年J.W.里特用氯化银还原现象发现紫外区。又次年W.H.渥拉斯顿观察到日光光谱的暗线。
1815年, J.von夫琅和费经过研究,命名暗线为夫琅和费线。文献中称钠线为D线,也是夫琅和费规定的。R.W.本生发明了名为本生灯的煤气灯,灯的火焰近于透明而不发光,便于光谱研究。
1859年,本生和他的同事物理学家G.R.基尔霍夫研究各元素在火焰中呈示的特征发射和吸收光谱,并指出日光光谱中的夫琅和费线是原子吸收线,因为太阳的大气中存在各种元素。他们用的仪器已具备现代分光镜的要素。他们可称为发射光谱法的创始人。 化学分析包括滴定分析和称量分析,它是根据物质的化学性质来测定物质的组成及相对含量。
光谱学
质谱学
分光度和比色法
层析和电泳法
结晶学
显微术
电化学分析
古典分析
虽说当代分析方法绝大部分为仪器分析,但有些仪器最初的设计目的,是为了简化古典方法的不便,基本原理仍来自於古典分析。另外,样品配置等前置处理,仍需要藉由古典分析手法的协助。以下举一些古典分析方法:
滴定法
重量分析
无机定性分析 分析仪器:当代分析化学著重仪器分析,常用的分析仪器有几大类,包括原子与分子光谱仪,电化学分析仪器,核磁共振,X光,以及质谱仪。仪器分析之外的分析化学方法,统称为古典分析化学。
分析化学是化学的一个重要分支,它主要研究物质中有哪些元素或基团(定性分析);每种成分的数量或物质纯度如何(定量分析);原子如何联结成分子,以及在空间如何排列等等。
仪器分析的方法:它是根据物质的物理性质或物质的物理化学性质来测定物质的组成及相对含量。仪器分析根据测定的方法原理不同,可分为电化学分析、光学分析、色谱分析、其他分析法等4大类。如右图。
主要分析仪器:
原子吸收光谱法(Atomic absorption spectros, AAS)
原子荧光光谱法(Atomic fluorescence spectros, AFS)
α质子-X射线光谱仪(Alpha particle X-ray spectrometer, APXS)
毛细管电泳分析仪(Capillary electrophoresis, CE)
色谱法(Chromatography)
比色法(Colorimetry)
循环伏安法(Cyclic Voltammetry, CV)
差示扫描量热法(Differential scanning calorimetry, DSC)
电子顺旋共振仪(Electron paramagnetic resonance, EPR)
电子自旋共振(Electron spin resonance, ESR)
椭圆偏振技术(Ellipsometry)
场流分离法(Field flow fractionation, FFF)
传式转换红外线光谱术(Fourier Transform Infrared Spectros, FTIR)
气相色谱法(Gas chromatography, GC)
气相色谱-质谱法(Gas chromatography-mass spectrometry, GC-MS)
高效液相色谱法(High Performance Liquid Chromatography, HPLC)
离子微探针(Ion Microprobe, IM)
感应耦合电浆(Inctively coupled plasma, ICP)
Instrumental mass fractionation (IMF)
选择性电极(Ion selective electrode, ISE)
激光诱导击穿光谱仪(Laser Inced Breakdown Spectros, LIBS)
质谱仪(Mass spectrometry, MS)
穆斯堡尔光谱仪系统(Mossbauer spectros)
核磁共振(Nuclear magnetic resonance, NMR)
粒子诱发X-射线产生(Particle inced X-ray emission spectros,PIXE)
热裂解-气相色谱-质谱仪(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)
拉曼光谱(Raman spectros)
折射率
共振增强多光子电离谱(Resonance enhanced multi-photon ionization, REMPI)
扫瞄穿透X射线显微镜(Scanning transmission X-ray micros,STXM)
薄板层析(Thin layer chromatography,TLC)
穿透式电子显微镜(Transmission electron micros,TEM)
X射线荧光光谱仪(X-ray fluorescence spectros,XRF)
X射线显微镜(X-ray micros,XRM) 化学分析和仪器分析
凡主要利用化学原理进行分析的方法称为化学分析法;而主要利用物理学原理进行分析的方法则称为仪器分析法。当然这两者的界限难以截然划清,也有介乎二者之间的方法。
仪器一般指大型仪器,如核磁共振仪(见核磁共振谱)、X射线荧光仪 (见X射线荧光光谱分析法)、X射线衍射仪、质谱仪(见质谱法)、电子能谱仪等。原子发射光谱法和原子吸收光谱法基本上采用湿法预处理,然后在相应仪器中测定,可认为是介于二者之间的方法,也可看作是化学法与仪器法的联合使用。不能认为用到仪器就是仪器分析。例如,重量分析开始于用天平称量样品,末一步再用天平称沉淀重量。
天平是物理仪器,称量是物理过程,但重量分析却是公认的典型化学分析法,原因是重量分析主要靠欲测离子与沉淀剂作用而定量析出沉淀。至于经典法一词,专指重量分析法和容量分析。其范围远狭于化学法。所以经典法仅是化学分析法的一部分,而不是全部。 粗分为无机分析和有机分析两大类
天然产物和工业制品中的无机物,如岩石、矿物、陶瓷、钢铁、合金、矿物酸、烧碱等的分析属无机分析;石油、染料、塑料、食品、合成药物、中草药等的分析属有机分析。简言之,凡碳氢化合物及其衍生物的分析属有机分析,而除上述物质外的分析统属无机分析。不过,无机物中有时夹杂一些有机物质,而有机物也含有无机物质。例如,河水、海水中含有有机物,有些锰矿夹杂有机物,煤含有灰分,石油含有以络合物形式存在的金属,纸张中有无机填充物等。这类物品既用到无机分析,也用到有机分析。
还有一些方法对无机物质和有机物质同样有效,如气相色谱法便是其中之一。样品中一氧化碳、二氧化碳、氢、氮、氧、甲烷、乙烯、水气等在同一柱中,在选择的条件下可逐一分离或分组分离。奥萨特气体分析器也是如此,只是分离的原理不同。
痕量分析是指样品所含的量极为微少。一般在样品中含量多的为主要成分,含量少的为次要成分。E.B.桑德尔认为含量在1%~0.01%的为次要成分。有人认为在10%~0.01%的为次要成分。含量在万分之一(0.01%)以下称为痕量。痕量分析的动向趋于测定愈来愈低的含量,因此出现了超痕量分析,即含量接近或低于一般痕量下限。这名称只是定性的。定量或更明确的名称见下列规定:
痕量 10~10微克/克
微痕量10~10微克/克
纳痕量 10~10微克/克
沙痕量 10~10
微克/克微痕量分析尚另有一种意义,即使用微量分析的称样,而测定其中痕量元素(例如<10微克/克)。为与前述一词区分,后一词应称为微样痕量分析。 ①选择性最高,以至具有专一性,即干扰极少,这样就可以减少或省略分离步骤;
②精密度和准确度最高;
③灵敏度最高,从而少量或痕量组分即可检定和测定;
④测定范围最广,大量和痕量均能测定;
⑤能测定的元素种类和物种最多;
⑥方法简便,即最易操作而不需高度技巧;
⑦经济实惠,即要求费用少而收益大。但汇集所有优点于一法是办不到的,例如,在重量分析中,如要提高准确度,需要延长分析时间(如用重沉淀法纯化沉淀)。因为化学法测定原子量要求准确到十万分之一,所以最费时间。 分析方法要力求简便,不仅野外工作(诸如地质普查、化学探矿、环境监测、土壤检测等)需要简便、有效的化学分析方法,室内例行分析工作也如此。
因为在不损失所要求之准确度和精密度的前提下,方法简便,步骤少,这就意味着节省时间、人力和费用。例如,金店收购金首饰时,是将其在试金石板上划一道(科学名称是条纹),然后从条纹的颜色来鉴定金的成色。这种条纹法在矿物鉴定中仍然采用。
当然,该法不及火试金法或原子吸收光谱法准确,但已能达到鉴定金器之目的。又如,糖尿病人的尿糖量可用特制的含酶试纸进行检验,从试纸的颜色变化估计含糖量的多寡,其方法之简便连患者本人也会使用。另一方面,用原子吸收光谱法虽然也能间接测定尿样中含糖量,但因为不经济而没有被采用。 虽然有不少灵敏的和选择性强(甚至专一)的方法,但是如果欲测元素的浓度接近或低于方法的测定下限,则富集仍不可避免。富集方法很多,如升华、挥发、蒸馏、泡沫浮选(见痕量富集)、吸附(用分子筛、活性炭等)、色谱法、共沉淀、共结晶、汞齐作用、选择溶解、溶剂萃取、离子交换等。
在检出或测定之前,常常需要使欲测(或检出)物质与干扰物质彼此分离。重要的分离方法有蒸馏、溶剂萃取、离子交换、电渗析、沉淀、电泳等,大都与富集方法相同。富集可认为是提高浓度的分离方法。
隐蔽作用(见隐蔽和解蔽)虽不是分离,但其作用使离子失去其正常性质,即令该离子以另一形式存于反应体系中。然而在分析化学中分离之目的无非使干扰离子不再干扰,因此就广义而言,隐蔽及其相反作用解蔽应包括在分离范畴中。在分析化学中采用隐蔽和解蔽作用由来已久。重量分析、光度法、极谱法中均已应用,特别在点滴试验和络合滴定法中使用得更频繁。 取样最重要的要求是有代表性,即取来欲分析的样品须能代表全体。均匀或容易混匀的物质取样自不成问题,气态和液态样品属于这一类。不均匀的固态物质,如矿石和煤炭等应按规定手续取样。否则,分析结果不能代表原物质,徒然浪费人力物力。野外矿石取样多由地质人员进行。所得大样在试验室中由分析人员按一定手续粉碎和缩分到小样。另一方面,有机元素燃烧法分析合成的纯样品则无此问题。
样品溶熔是第二步。溶熔包括溶解和熔融,也称分解。有些样品能溶解于水、酸或混合酸、碱,以及有机溶剂中。上述办法不能溶解的,可改用熔剂熔融。熔剂可分碱性(如碳酸钠)、酸性(如硫酸氢钾)、氧化性(如过氧化钠)和还原性的(如硫代硫酸钠)。如果欲分析的成分较易挥发或熔融温度高,对坩埚腐蚀严重,则可改用烧结,即将颗粒表面部分熔化。史密斯法用氯化铵和碳酸钙(1:8~12)与硅酸盐岩石混合和烧结,以测定其中的碱金属便是一例。有机化合物和生物样品可采用干法或湿法灰化。干法灰化为在充分氧气存在下加热至炭化并逐渐燃烧,或在较低温度用原子氧氧化(低温灰化)。湿法灰化利用氧化性酸(如硝酸、高氯酸、浓硫酸)氧化样品。干法、湿法各有其优缺点,须视样品而定。

热点内容
我要开店淘宝 发布:2020-09-09 12:06:51 浏览:854
十大相机品牌 发布:2020-08-29 10:57:46 浏览:788
淋浴器十大品牌 发布:2020-08-29 01:52:31 浏览:627
开店宝支付 发布:2020-09-15 10:25:50 浏览:560
技术专利申请 发布:2020-08-27 21:42:43 浏览:545
怎么扫条形码 发布:2020-08-29 10:28:31 浏览:538
怎么保护知识产权 发布:2020-08-29 01:30:26 浏览:535
济南创新谷 发布:2020-09-10 04:19:14 浏览:533
淘宝开店照片要求 发布:2020-09-09 12:08:29 浏览:532
开店美发 发布:2020-09-02 20:04:55 浏览:531