当前位置:首页 » 创新创业 » 量化投资创新

量化投资创新

发布时间: 2022-05-18 05:15:14

1、量化投资基金的优势

南方策略优化是最新一只量化投资基金。该基金在产品设计上充分考虑了中国市场的现状和发展趋势,提出了创新的主动量化投资模式。这种以定量模型为核心,但在决策流程和模型构建中有机结合定性分析的模式有可能成为量化投资的主导模式。同时,根据国外量化投资发展的新趋势和国内市场的特点,南方也开发了最新进化的量化投资模型。
南方策略优化的主动量化投资模式主要体现在三个层次:在资产配置层面上定性定量并重,在行业配置层面上的定量为主定性为辅,以及在个股选择层面的量化筛选。
在资产配置层面,综合分析经济周期、财政政策、市场环境等因素的基础上,采用定量和定性相结合的思路确定本基金的资产配置。这与传统的主动型基金可以说基本一致;但恰恰是在资产配置层面上,解决了量化模型最大的缺陷,即对周期转换缺乏预判能力。也就是说,在市场趋势可能发生转折的时候,定性决策可能占据主导。
在行业配置层面上,该基金提出以B-L模型为基础构建的行业配置模型。这一模型体现了定量为主,有机结合定性分析的思想。这一模型的关键在于,在分析行业指数历史收益数据的基础上,利用概率统计方法,将投资人对各行业或板块的预期收益的倾向性观点相结合,产生新的预期收益,通过求解量化模型进而得到优化的行业配置比例。简单来说,这一模型的思想就是把投研人员对未来预期的主观判断当作模型本身的关键因子,用于修正从历史数据中得出的预期收益,从而优化模型配置结果。因此模型给出的不仅是客观规律,而且也结合了投研人员关于未来行业判断的观点修正。
在个股选择上以量化模型为主,以实现对个股的广泛筛选。其采用的模型是经典的多因子选股模型,“南方多因子量化选股模型”重点选择四方面的因子:(1)基本面因子:包括上市公司的盈利能力、现金流情况、财务杠杆水平以及未来成长性等,反映了上市公司的当前价值和成长潜力。(2)价值因子 :反映股票的绝对和相对估值水平。(3)市场面因子:包括股票价格的动量/反转趋势、股票所处风格板块的轮动,股票价格的历史波动等。(4)流动性因子:包括平均成交量、平均流通市值、Amivest流动比率等各种指标,对个股流动性进行衡量。通过数据分析筛选未来可能具有超额收益的个股。
量化投资要有严格的纪律,也应有鲜明的投资目标定位。南方策略优化把自身的投资目标定位在稳定超越指数,稳定获取超额收益。超额收益主要通过量化配置和选股获取超额alpha收益,也可能来源于通过主动选时获取beta超额收益。量化投资希望在持续性,稳定性上保持优势。而稳定超越指数,也就相当于超越多数主动型基金。 和传统的主动管理基金相比,量化基金的优点正在于降低了对基金经理主观能力和经验的依赖。但量化基金要想成功运作,管理人的能力同样重要。这主要体现在两方面:一是能否开发和设计出好的量化模型,二是如何做到主动和量化的结合,在投资实践中用好模型。在这两方面,国内的基金公司都进行了长期的积累和准备,南方基金的量化投资团队即是其中的典型。

2、量化投资的量化投资

开设学校:对外经济贸易大学
开设学院:统计学院
所属学科:金融学
课程名称:资产管理与量化投资方向
配备最强师资组合
对外经济贸易大学在职研究生享受与统招研究生一模一样的师资,均为硕导、博导。对外经济贸易大学校长施建军、统计学院副院长刘立新教授在该领域内享有很高声誉,均参与在职研究生授课。
课程特有国际性、前沿性、实践性
对外经贸大学自身国际化、前沿化特征显著,金融专业一直是对外经贸大学的优势学科,所设课程同样与国际金融市场接轨密切,如量化投资、统计套利、高频交易等。
课程将资产管理和量化投资技术紧密结合
课程讲授金融各行业资产管理业务的发展模式及运用,尤其是运用量化投资技术和程序交易进行资产管理:套利策略设计、投资方案实施、风险分析、市场预测等,旨在培养复合型的金融高级人才。
定期为在职研究生开展主题讲座论坛
邀请政府和业内知名专家举办系列关于经济金融政策分析、金融监管、金融市场投资、风险管理等方面专题讲座。如:贵金属市场投资、微量网量化投资、风险投资、投资银行、对冲基金、等专题。 伴随着金融全球化的进程,以及我国金融市场的发展创新,利用多市场、多品种、多策略的综合投资和管理将成为未来资产管理、财富管理、风险管理、结构化产品设计的重要发展模式,尤其是运用量化投资技术和程序交易进行套利策略设计、投资方案实施、风险分析、市场预测等。
为适应政府、各类金融机构(银行业、证券业、保险业、期货业、信托业等)以及各类企事业单位对资产管理和投资分析人才迅速增长的需求,提高从事资产管理、金融市场投资、财富管理和养老金策划、社会保障等领域在职人员的专业理论水平,尤其是运用量化投资方法进行资产管理,对外经贸大学特开设金融学专业资产管理与量化投资方向在职研究生课程,旨在培养复合型专业化人才。 资产管理已经成为我国金融市场的发展创新的重要领域,许多金融机构纷纷成立专门的资产管理公司以满足社会发展的需求,而资产管理不仅需要对于各类型资产的了解、应用,更重要的是基于经济金融的生态环境的变化进行综合的、动态的资产管理。
学员通过资产管理与量化投资方向的专业学习,不仅可以掌握运用金融产品及投资理论进行资产管理的方法和技术,而且可以通过不同金融市场的实务操作、案例分析、专题讲座了解现代资产管理的应用,掌握运用量化技术进行投资、融资、资产负债管理、财富管理的手段,为从事资产管理领域的工作提供必要的准备。 1、随着国际国内金融市场的发展,现阶段资产管理已经成为我国金融市场发展创新的重要领域;
2、加大资产管理业务是金融行业扩大资产规模,增加收益的最好选择;
3、资产管理是企业追求长期稳定收益的必然选择;
4、资产管理是普通投资人(家庭、个人投资理财)最受益的选择方式;
5、资产管理是规范金融市场的有效途径,极大的降低市场的波动率;
6、资产管理业务是金融从业人员的激励和动力,促使金融从业人员优胜劣汰,优化金融团队;
7、政府支持、政策支撑:资产管理为社会、金融业、企业、个体等均带来巨大收益,自2012年开始政府大力支持,对其放宽政策,目的就是将此项业务坚定不移的开展下去。
报名条件:
1、从事社会工作三年以上的大专学历者;
2、大学本科毕业三年,并获得学士学位,可申请金融学专业经济学硕士学位。 按照对外经贸大学金融学专业硕士研究生培养方案,根据资产管理与量化投资方向的具体情况实施课堂教学。
学位课程:
微观经济学 宏观经济学 财政学
国际经济学货币银行学 社会主义经济理论
资产管理模块:
投资组合与基金管理 固定收益与信托产品投资
保险规划与财税规划 衍生产品与另类投资
量化投资模块:
金融工程与量化投资 技术分析与高频交易
金融统计与计量 统计套利与程序交易
金融市场、财务策划模块:
金融市场实务 理财规划实务
金融风险管理 财务报表分析 1、申请学位按照对外经济贸易大学研究生部学位办公室关于以研究生毕业同等学力申请硕士学位的规定办理。所交学费不包括进入论文阶段后的费用。
2、报名参加研究生课程进修班学习的人员,可在报名时提出以研究生毕业同等学力申请硕士学位。
3、国家统一组织的英语和经济学学科综合水平考试,由我院协助学员到研究生部办理手续,费用按规定由学员交纳。
4、我院将为学员安排教师进行学位论文的指导。

3、量化投资哪个软件最好用?

metafuture不错啊。
metaFutures利用了量化投资的先进思想,通过对熵理论,统计套利和风险管理等先进理论的应用,基于对历史大盘数据的分析上,为用户提供了一款具有三重风险控制的程序化自动交易智能策略软件。本系统的程序化自动交易集套利和资金管理两大功效一身,具有“强大的风险控制性”、“投资策略一贯性”、“操作客观性”、“下达指令准确性”以及“用户沟通及时性”、“使用舒适性”等特点,更有Chicago独立自主研发的实时聊天以及资金管理等功能更使得metaFutures成为一款功能创新、多样、强大且人性化的软件。

4、什么是程序化-量化交易?

量化投资就是以数据模型为核心,以程序化交易为手段,以追求绝对收益为目标的一种投资方法。从广义来说,程序化交易就是量化投资;但从狭义来说,程序化交易就是一个交易手段。就国内而言,目前对于程序化交易的定义基本取广义定义,即量化交易。其中量化交易又可以分为三大类:对冲套利类、投机类和高频类。
程序化交易是证券交易方式的一次重大的创新。传统交易方式下,一次交易中只买卖一种证券,而程序化交易则可以借助计算机系统在一次交易中同时买卖一揽子证券。根据美国纽约证券交易所 (NYSE) 网站2013年8月份的最新规定,任何一笔同时买卖15只或以上股票的集中性交易都可以视为程序化交易*,在之前的NYSE程序化交易还包括了一揽子股票的总价值需要达到100万美元的条件。
目前,关于程序化交易,学术界和产业界并没有一个统一权威的定义,在国内,通常意义下的程序化交易主要是应用计算机和现代化网络系统,按照预先设置好的交易模型和规则,在模型条件被触发的时候,由计算机瞬间完成组合交易指令,实现自动下单的一种新兴的电子化交易方式。也就是说,国内资本市场对程序化交易的理解,不再如NYSE那样着重突出交易规模和集中性,而只强调交易模型和计算机程序在交易中的重要性。
程序化交易系统是指设计人员将交易策略的逻辑与参数在电脑程序运算后,并将交易策略系统化。
当趋势确立时,系统发出多空讯号锁定市场中的价量模式,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能轻松抓住趋势波段,进而赚取波段获利。程序化交易的操作方式不求绩效第一、不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。
程序化交易的买卖决策完全决定于自己的交易理念系统化、制度化的逻辑判断规则,透过电脑的辅助,将各种交易理念转化为电脑程序语言的一种交易模式,即由电脑来代替人为发出买卖讯号,再根据系统使用者发出的委托方式,由电脑自动执行下单程序。所以,程序化交易可以避免突发事件的发生使得投资者自己毫无防备,因此,天津方正中期滨海营业部可以为您提供程序化交易投资建议。

5、量化投资的前景

随着20世纪80年代以来各类证券和期权类产品的丰富和交易量的大增,华尔街已别无选择,不用这些模型,不使用电脑运算这些公式,他们便会陷于困境,自招风险。1997~1998年亚洲金融危机,市场暴跌,量化投资的算法交易也起到了同样的坏作用。此外,始于2007年的金融危机中,量化投资也未能幸免。时过境迁,2011年,量化基金再次表现优异。
稍微接触到资本市场的人,大都听说过基本面投资和价值投资,而对于这方面的天才人物“股神”巴菲特,更是几乎家喻户晓,妇孺皆知。他以企业财务报表的分析见长,擅长挖掘企业的内在价值,一旦买入便长期持有,持续获得稳定高额收益,为股东创造了丰厚利润,无人能及。
相比之下,与价值投资同等重要的量化投资——即借助数学、物理学、几何学、心理学甚至仿生学的知识,通过建立模型,进行估值、择时及选股,则没有那么幸运——在大多数人眼里,量化投资是一个神秘的领域,深不可测,玄奥无比,令人望而却步。世人皆知巴菲特,而对于号称最能赚钱的基金经理人、在20年的时间里创造了年均净回报率高达35%惊人传奇的量化投资大师西蒙斯,却只能成为少数人的专属。
量化投资看似神秘,但并不古老。它从70年代开始逐渐兴起,90年代才大行其道。之所以如此,是因为量化投资有其诞生的特定土壤,需要一系列的条件方能破土而出,这些条件其实相当苛刻。
很难想象,量化投资技术并非发端于华尔街,而是肇始于学术象牙塔里的少数“怪才”,他们长期不被正统的经济学所接受,甚至遭到排斥,因此处境艰难。1952年3月发表“投资组合选择”论文、提出现代财务和投资理论最著名洞见的马克维茨,以该理论参加博士答辩,竟然战战兢兢差点未获通过。1990年10月,这些人中有三位获得诺贝尔经济学奖,当时局外人很少有人清楚为什么他们能够得此殊荣;而三人中的其中一位则将他们的获奖比作“芝加哥业余球队赢得了世界杯”。
但是,没有来自象牙塔的现代金融理论,便没有量化投资的兴起。马克维茨的投资组合理论,提出了风险报酬和效率边界概念,并据此建立了模型,成为奠基之作。托宾随后提出了分离理论,但仍需要利用马克维茨的系统执行高难度的运算。
夏普1963年1月提出了“投资组合的简化模型”,一般称为“单一指数模型”。马克维茨模型费时33分钟的计算,简化模型只用30秒,并因节省了电脑内存,可以处理相对前者8倍以上的标的证券。1964年,夏普又发展出资本资产定价模型(CAPM),这是他最重要的突破,不仅可以作为预测风险和预期回报的工具,还可以衡量投资组合的绩效,以及衍生出在指数型基金、企业财务和企业投资、市场行为和资产评价等多领域的应用和理论创新。
1976年,罗斯在CAPM的基础上,提出“套利定价理论”(APT),提供一个方法评估影响股价变化的多种经济因素。布莱克和斯克尔斯提出了“期权定价理论”。莫顿则发明了“跨期的资本资产定价模型”。
有趣的是,不少人最初并非经济学家,如巴契里耶和布莱克原先是数学家,夏普则从事医学,奥斯伯恩为天文学家,沃金与坎德尔是统计学家,而特雷诺则是数学家兼物理学家。他们转行都是被金融市场研究所深深吸引,沉迷于其中的无穷魅力。
然而,仅有现代投资(行情 股吧 买卖点)理论的建立,及各类模型的完善与推陈出新,并不会直接催生出量化投资,它还需要其他几个重要前提条件,比如机构投资者在市场中占据主导,电脑技术足够发达,以及传统华尔街投资家的傲慢被市场击溃转而被迫接受新的投资理念。
量化投资不会出现在个人投资者为主的时代。个人投资者既缺乏闲暇的时间,也普遍无此能力。随着退休基金和共同基金资产的大幅增加,它们成为市场上的主要机构投资者,并委托专业机构进行投资操作。管理大规模资产,需要新的运作方式和金融创新技术,同时专业的投资管理人也有能力和精力专注地研究、运用这些技术。
没有发达的电脑技术,量化投资也将成为无源之水,无米之炊。在电脑革命发生前,根本无法根据上述模型进行运算。1961年,与马克维茨共同获得1990年诺贝尔奖的夏普曾说,当时即使是用IBM最好的商用电脑,解出含有100只证券的问题也需要33分钟。当今,面对数不胜数的证券产品,以及庞大的成交量,缺了先进电脑的运算速度和容量,许多复杂的证券定价甚至不可能完成。
量化投资在不经历市场的崩盘,傲慢投资者的自信未被摧毁之前,不会盛行。比较早的时候,华尔街对学术界把投资管理的艺术,转化成通篇晦涩难懂的数学方程式一直持有敌意。他们认为,投资管理需要天赋、直觉以及独特的驾驭市场的能力,基金经理可以独力打败市场,而无需依靠那些缺乏灵魂、怪异的数学符号和缥缈虚幻的模型。在美国,70年代初期表现最佳的基金经理人从未听过贝塔值,并认为那些拥有数学和电脑背景的学者只是一群骗子。
1973~1974年美国债券市场和股票市场全面崩盘,明星基金经理人烟消云散,财富缩水堪比30年代大萧条。当时,颇有先见的投资顾问兼作家彼得·伯恩斯坦认为,必须采用更好的方法管理投资组合,并创办了《投资组合》杂志,一出刊便获得成功。此后,随着80年代以来各类证券和期权类产品的丰富和交易量的大增.量化投资光彩炫目,但也具有魔鬼般的力量。它时而风光无限,但也常常坠入深渊。
1987年10月大股灾,黑色星期一,当天股市和期货成交量高达令人吃惊的410亿美元,价值瞬间缩水6000亿美元。很多股份直接通过电脑而不是经由交易所交易。一些采用投资组合保险策略的公司,在电脑模式的驱使下,不问价格机械卖出股票。很多交易员清楚这些投资组合会有大单卖出,宁愿走在前面争相出逃,加剧了恐慌。针对整个投资组合而非单个证券,机械式的交易,电脑的自动操作,使得这种量化投资出现助跌之效,大量的空单在瞬间涌出,将市场彻底砸垮。
在此次亚洲金融危机中,著名的长期资本管理公司,这家来自学术象牙塔的怪才充斥、主要运用量化投资技术的对冲基金,曾经在市场上呼风唤雨、无往不利,但偏偏遭遇俄罗斯国债违约这一小概率事件,陷入破产之境,迫使美联储集华尔街诸多投资银行之力,加以救助。此外,始于2007年的金融危机中,量化投资也未能幸免。
虽然麻烦不断,但量化投资依然必要且有效。要知道,在本次金融危机发生前,量化基金的表现连续8年超过其他投资方式。当然,挫折也会带来量化投资技术的更新和完善,比如在模型中设定新的变量,尤其是加入以往并未包含的宏观经济参数。时过境迁,2011年,量化基金再次表现优异。虽然量化投资能否就此再度复兴仍属未知,但由本文先前的讨论,漫漫历史长河,此一趋势已不可逆转,量化投资依然拥有光明的未来。
德意志银行的董事总经理、全球量化投资主管罗崟先生在激烈的竞争中脱颖而出,夺得全球最权威的《机构投资者》期刊2011年美国和欧洲量化分析第一名的佳绩。在华尔街40余年排名史上,罕有华人获此殊荣。《金融时报》慧眼识金,就此专门做了访谈,并嘱我就量化投资写篇评论。我欣然命笔,并借此祝愿量化投资在中国的资本市场上,能够早日生根。

6、期货实盘量化交易平台创新点有哪些

量化交易平台的构建,打造满足用户需求及体验良好的量化交易平台是重中之重,以及共享经济商业模式的创新。

7、目前国内进行量化投资的个人多不多?

近年来,随着证券市场规模的不断扩大,金融衍生产品不断推出, 投资策略和盈利模式发生根本性改变,投资复杂程度日益提高,导致证券市场投资者的构成比例出现了相应的变化。专业投资管理人的占比越来越大,且有加速之势。另一方面,量化对冲投资策略以其中低风险稳定收益的特性,将成为机构投资者的主要投资方向之一。一、量化对冲业务特点及服务要求量化对冲是一项业务特点鲜明、极具专业性、配套服务要求高的业务,其业务特点表现为:(一) 投顾专业化水平高。量化对冲业务对管理人在数据挖掘、策略开发、程序化交易等IT 技术研发能力要求很高。根据海外经验证明,从事量化对冲投资的管理人均为专业机构投资者,专业背景来自物理、数学、统计、计算机等领域的高端人才,需要具备量化投资模型的开发能力及持续的模型优化能力,具有一定的行业进入门槛。分支机构在识别和扶植量化对冲管理人方面也必须具备一定的鉴别能力,避免付出大量精力而收效甚微。(二) 量化对冲业务存在天然的地域分布。与公募基金公司布局相类似,目前主要的量化对冲管理人大都集中在上海、北京、深圳等几大金融市场活跃区域,与公司各地区量化对冲业务发展不均衡的情况相吻合。(三) 产品风险相对较低。目前市场上的量化对冲产品多以市场中性策略为主,对冲证券市场系统性风险,相较于传统方向型的权益类产品,在控制产品回撤和获取稳定收益方面具备较大的优势。随着卖空机制的不断完善,对冲策略将逐渐丰富,例如:统计套利、多空策略、配对交易等。(四) 业务落地要有专门的支持团队。据近年来推广量化对冲业务的实际操作经验,在业务执行层面需要落地营业部协调的技术问题就很多,各营业部须配备专业的业务团队进行支持,快速响应和解决存在的问题。实际情况是大部分营业部没有足够的人力、财力和物力,用于配臵专业的支持团队。根据开展量化对冲业务的以上特点,对券商提出了较高的综合服务要求:(一) IT 系统要求高。量化对冲业务模式对于IT 系统都具有极高要求,一方面体现在交易系统及行情数据响应速度稳定高效,另一方面体现在系统整合及开发易用性。(二) 策略研发需求高。随着金融创新工具的不断推出,量化对冲管理人只有具备持续策略开发和策略优化的能力才能取得稳定、优秀的投资业绩,需要我公司提供强大的策略研究以及策略交流等支持。(三) 产品设计和发行要求高。量化对冲业务发展的必由之路, 是以产品化的模式实现规模效益扩大生产力,投资管理人需要券商提供SPV 设计(如信托、公募、资管等法律结构安排)、提供产品结构设计、风险控制、后台运营和营销组织等全方位的一揽子配套服务, 与证券公司在产品设计的专业能力、统一营销的组织能力和整合公司总部资源能力相匹配。二、量化对冲业务的发展现状
(一) 投资管理人或直接投资者专业化水平参差不齐
目前,市场上量化对冲投资管理人按专业水平大致分为三大类:
第一类:专业水准极高的管理人或投资人,拥有多年的投资经验,拥有自主开发的量化交易系统,有专门的策略研究团队,有实盘过往业绩表现,有持续的生存能力。此类管理人既有自学成才的,也有从 海归加盟的,来自成熟市场有经验的管理人在逐步增加;
第二类:正在成长过程中的管理人或投资人。此类管理人有较好的国内证券市场投资经验和过往业绩,学习能力强,应变能力强,正在成为量化对冲业务的新生力量;
第三类:专业能力欠缺,只有愿望,没有专业支撑,被动依赖技术平台而操作的管理人或是直接投资人,对量化对冲业务一知半解甚至完全不懂,根据策略交易系统发出信号被动投资,预计此类管理人 (投资人)难以应对市场变化,很快就会因束手无策而离开市场。
(二) 从券商或营业部提供的服务支持来看,专业化水准和服务支持能力也参差不齐。
主要分为三类:
第一类:由专业的团队支撑,有系统的技术支持、策略支持和服务支持;
第二类:正在起步阶段的券商,但他们也有可能后发制人,定位精准,整合资源,成为量化对冲市场的主力服务机构;
第三类:没有能力支持量化对冲业务。既无技术支持,也无专业服务团队,更谈不上策略支持。业务发展处于自生自灭的状态,业务也处于很大的波动中。

8、什么是量化投资?

量化投资是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式。量化投资从庞大的历史数据中海选能带来超额收益的多种"大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。
量化投资起源于上世纪七十年代的股票市场,之后迅速发展和普及,尤其是在期货交易市场,程序化逐渐成为主流。有数据显示,国外成熟市场期货程序化交易已占据总交易量的70%-80%,而国内则刚刚起步。交易者的情绪波动等弊端越来越成为盈利的障碍,而程序化交易天然而成的精准性、100%执行率则为它的盈利带来了优势。
量化交易的优势:
1.严格的纪律性
量化交易有着严格的纪律性,这样做可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差。我们的每一个决策都是有理有据的,特别是有数据支持的。系统会显示出当时被选择的这只股票与其他的股票相比在成长面上、估值上、资金上、买卖时机上的综合评价情况。
2.完备的系统性
完备的系统性表现在多层次,包括在大类资产配置、行业选择、精选个股三个层次上我们都有模型次是多角度,量化交易的核心投资思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度。
3.妥善运用套利的思想
量化交易正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。定定性投资大部分时间在琢磨哪一个企业是伟大的企业,那个股票可以翻倍的股票。与定性投资不同,量化投资大部分精力花在分析哪里是估值洼地。
4.靠概率取胜
这表现为两个方面,一是在定量投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用。二是在股票实际操作过程中,运用概率分析提高买卖成功的概率。
编辑于 2021-09-18
股票怎么开通t十0交易_ 股票双向交易平台 高杠杆
根据投资相关内容为您推荐股票
股票怎么开通t十0交易-上配天眼-快人一步!帮你查-投资更安全-数据挖掘-实时检测--安全检查-风险曝光为您的安全增添安全。
1www.peitianyan.com广告
量化交易中的机器学习和大数据
根据文中提到的量化投资为您推荐
金融专业人员如何应用机器学习和大数据技术来解决投资问题并提高投资绩效。下载 MATLAB 白皮书,了解更多!
ww2.mathworks.cn广告
更多专家
量化投资什么意思
律师1对1在线解答问题
5分钟内响应 | 万名专业答主
马上提问
最美的花火 咨询一个法律问题,并发表了好评
lanqiuwangzi 咨询一个法律问题,并发表了好评
garlic 咨询一个法律问题,并发表了好评
188****8493 咨询一个法律问题,并发表了好评
篮球大图 咨询一个法律问题,并发表了好评
动物乐园 咨询一个法律问题,并发表了好评
AKA 咨询一个法律问题,并发表了好评
— 你看完啦,以下内容更有趣 —
嘉实优质核心两年持有期混合型基金,9月1日隆重首发
价值成长兼备,11年实战投资,嘉实基金平衡风格投资总监亲自担纲;二年持有期,重点布局四大投资方向:创新科技,医疗服务,消费升级,进口替代!

9、如何评价微软研究院开发的AI量化投资平台Qlib?

列式存储算标配,天生支持多线程不错,但哪些场景有效还是未知数。最有趣的是他们搞了一套表达式引擎和缓存,你可以把布林带这样的计算交给底层引擎去完成,然后把表达式的计算结果缓存下来,缓存的数据和其他因子数据等效访问。这个方法大大简化了算法研究中的数据生成过程,还是很棒的。遗憾的是这套框架目前支持的数据类型还不够,除非你只用价格这样的数量数据,文本数据、非标准化的数据没办法纳入框架。整体而言还算不错的尝试,但性能好不好还是要看模型使用的算法。研究过许多量化平台的存储底层存储,大多都用的现成的HDF5或者bcolz,稍微厉害点在bcolz上改改,性能也基本就到极限了,但加上其他非标准化非价格数据的存储,整体速度会被拖慢几个数量级。而微软对AI的底层基础设施要求非常清楚,就是快且灵活,只有这样才能满足算法飞轮的快速运转,才能成为真正的生产力工具,目前是没有工具能达到这个要求的,我自己也搞过两次,都失败了,要兼顾的地方太多。这套系统相比国内外的其他系统而言算是一大进步,但也算不上多创新,不过至少可以期待。

10、量化投资和金融工程是怎样的一种关系?

金融工程包括创新型金融工具与金融手段的设计、开发与实施,以及对金融问题给予创造性的解决。量化投资的定义就是用计算机决策来代替人工决策。从广义的角度,也可以归为金融工程。

热点内容
我要开店淘宝 发布:2020-09-09 12:06:51 浏览:854
十大相机品牌 发布:2020-08-29 10:57:46 浏览:788
淋浴器十大品牌 发布:2020-08-29 01:52:31 浏览:627
开店宝支付 发布:2020-09-15 10:25:50 浏览:560
技术专利申请 发布:2020-08-27 21:42:43 浏览:545
怎么扫条形码 发布:2020-08-29 10:28:31 浏览:538
怎么保护知识产权 发布:2020-08-29 01:30:26 浏览:535
济南创新谷 发布:2020-09-10 04:19:14 浏览:533
淘宝开店照片要求 发布:2020-09-09 12:08:29 浏览:532
开店美发 发布:2020-09-02 20:04:55 浏览:531