当前位置:首页 » 创新创业 » 高斯数学创新

高斯数学创新

发布时间: 2022-05-16 15:20:42

1、高斯在数学上有哪些成就?

高斯在数学上的成就十分广泛,在微分几何、非欧几何、超几何级数、数论以及椭圆函数论等方面均有开创性贡献,并且在天文学、大地测量学和磁学的研究中引入数学方法,取得巨大的成就。

2、高斯有什么贡献?

高斯贡献:正十七边形、谷神星的轨道、天体运动理论、第一台电报机、日光反射镜。

1、正十七边形。1796年,19岁的高斯发现了如何只用一把尺子和一个圆规来构造一个正十七边形。这是自2000多年前古希腊人以来,多边形构造的首次进步。高斯用代数来证明他的构造,桥接了代数和几何之间的一个关键鸿沟。

2、谷神星的轨道。这颗矮行星最初是由天文学家朱塞普·皮亚齐在1800年发现的,谷神星在天文学家计算出它的轨道之前,就已经消失在太阳的后面。

高斯创立了一种叫做最小二乘法的模型,这是一种计算观测误差的方法,可以准确预测这颗矮行星的位置。直到现在,高斯发明的这种计算方法仍然是在两个变量之间找到精确关系的首选方法。



3、天体运动理论。1809年,高斯出版了关于天体在太空中运动的专著《天体运动理论》。该著作中描述了被大行星干扰的小行星运动,简化了轨道预测的繁琐数学运算。时至今日,高斯当年的研究仍然是天文学计算的基石。

4、第一台电报机。这也许不是高斯最著名的成就,但相当有创意。在1833年,高斯和物理学教授威廉·韦伯发明了第一台电磁电报机。在哥廷根大学,他们俩一直在磁学领域不断合作。他们建造了第一台电报机,以连接天文台和物理研究所,这个系统能够每分钟发送8个单词。

5、日光反射镜。从1818年到1832年,高斯对汉诺威进行了大地测量。在这段时间里他发明了日光反射镜,这是一种大大改善长距离土地测量的仪器。

日光反射镜用一面镜子把太阳光反射到遥远的地方,可以达到几百千米远,这能够为测量员标记位置。可惜,这种仪器需要在天气晴朗的情况下才有很好的效果。到了20世纪80年代,GPS技术取代了它。

3、在数学领域的欧拉和高斯两位,谁更加伟大?为什么?

数学是我们从小学到大的课程,很多人对其是头疼不已。可数学虽然其貌不扬但在人类发展历史上可是有着不可撼动的地位。高斯和欧拉是我们熟悉的数学家,在数学领域的欧拉和高斯两位,谁更加伟大?为什么?这两位数学家都很伟大,如若非要比较的话,我认为高斯更胜一筹。因为欧拉虽然和高斯一样把数学延伸到了其他领域,但欧拉在数学理论上的体系性和完成度是比不上高斯的。让我们来分析分析。

数学家欧拉出生于十八世纪,欧拉计算能力十分惊人,就连高数他都可以心算。欧拉最杰出的贡献就是开创了关于数学的纯粹职业,在欧拉之前数学是奢侈的,数学不能让鸭子下蛋,不能生产,数学似乎没有用。而欧拉把数学结合生活的做法则开启了一个时代,计算方法和速度以及数学逻辑都站在时代顶端欧拉,“统治”着十八世纪。欧拉的学问和人品都是没得挑的。

欧拉去世时,高斯才八岁。高斯被称为数学王子,他生平研究出了很多著名的理论,里程碑级别的论文。但因为害怕教会而不敢发表,很多都在其去世后得以发表。高斯的那些数学笔记如果可以及时发表,数学的发展进程至少可以推进四十年。光以高斯名字命名的公式定理都有一百多个,高斯虽然没有开创新的数学分支,但在数学的很多分支上他的贡献是有完成度和创始性的,这是欧拉无法比较的。

无论是高斯还是欧拉,都是我们普通人一生无法匹及的高度。可以说他们是神话,是开创新时代的传奇人物。我们生活中的很多很多看起来与他们没有联系,实际上没有他们,我们这个时代也会倒退。

4、数学家高斯有什么成就

高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。

高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

天赋异禀:

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。

于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的证明了正十七边形可以用尺规作图。

5、卡尔·弗里德里希·高斯的数学成就有哪些?

1777年4月30日,德国的布伦瑞克城一个引水站站长家里新生了一个男孩,他就是卡尔·弗里德里希·高斯,一位天才的数学家。

高斯从小聪明好学,对数学有着得天独厚的天赋。3岁时,每当父亲和其他大人们计算水的帐目时,他都在一旁聚精会神地听着看着,对枯燥的数字有无限的兴趣。有一次,当他的父亲哥布哈德刚刚算完一笔支出帐,就听小高斯说:“爸爸,这笔帐您算的不对!”

爸爸吃惊地看着3岁的小儿子,似信不信地把帐重算一遍。令他吃惊的是,自己算的帐真的错了!但他心里想:“这也许是一次巧合吧。”

后来,这种“巧合”越来越多,哥布哈德才知道他的儿子是个天才。由于生意场上的失意,老高斯渐渐地颓废下去,时常用酒打发时光,他就把算帐的工作全部推给了不足10岁的小高斯。而小高斯不管帐目多么繁琐复杂,都能运算自如,表现出超常的计算能力。

读小学时,小高斯特别迷恋算术课。一天,数学老师伯特纳夹着手杖来上算术课,他对同学们说道:“现在给你们出一道题,请计算出从1到40所有数字的总和。谁做好了,就把答案送到我的讲桌上来。”

于是,孩子们都埋头书桌,教室里鸦雀无声。伯特纳老师悠然自得地放下手杖,坐在讲桌前看着这些孩子们。

谁知他刚刚坐稳,就见小高斯拿着练习本向他走来,轻松愉快地说:“老师,我做好了。”

伯特纳心想,他做得这么快,错误一定不少。便说:“放下吧!”心里在想,等都交全了,我再教训这个毛草而神气十足的孩子。

过了许久,孩子们才把练习本全交上来,伯特纳特意拿起最先交的高斯的练习本。他看了一会儿便惊呆了!只见小高斯的练习本上整齐地排着20组加法:1+40,2+39,3+38,4+37,……,然后用一组乘法:41×20。得出了正确答案:820。无疑,这答案是正确的。老师望了一眼他想批评又批评不了的高斯,内心却受了很大震动。事实上,小高斯是在没有一点儿概念的情况下,发现了等差数列的规律及计算方法。

从此,伯特纳老师对小高斯刮目相看,并尽力地培养他。每当去汉堡时,都要买回各种数学课本给高斯看。这一切,使小高斯的数学才能大增。不久,小学还没毕业的高斯,其计算才能就引起了当地各界人士的注意。14岁时,高斯被引荐给当地最有名望的人物,布伦瑞克城的大公卡尔·费尔南多,费尔南多成了高斯的长期保护人。

在费尔南多大公在世的那些年里,高斯每年都可以领到薪俸。由于有了这笔钱,生活有了保障,高斯就全身心地投入到研究工作中去。

1801年,24岁的高斯出版了《算术研究》这一科学巨著,开创了近代数论,得到数学界的一致好评,奠定了他作为18世纪最伟大数学家的地位。

在这之前,高斯成果累累。11岁时,他发现二项式定理;17岁时提出最小二乘法;22岁时证明了代数方程根定理……人们一致赞誉他是当之无愧的“数学王子”。

1807年,高斯应哥廷根大学的邀请,担任了该校的数学教授和天文台台长。从此他在哥廷根大学从事研究直至生命的终结。在以后的岁月里,他对非欧几何、复变函数、概率论、椭圆函数论、数学统计等都有重大贡献。他以治学态度认真严谨著称。虽然,早在1800年他就发现了椭圆函数,1816年发现了非欧几何。但他一直在做这些重大发现的完善工作,一直没将这些发现公布于世。直到他死后,人们才从他日记的遗稿中发现了这一切。

高斯的著作非常丰富,但在他生前并未全部发表出来。直到第二次世界大战前夕,才由哥廷根大学的学者们对其遗著进行整理研究,出版了长达11卷的《高斯全集》。

高斯还在天文学和物理学上有很高的成就。他创立了一种可以计算星球椭圆轨道的方法,可以极准确地预测出行星的位置。由他计算出了一颗即逝的谷神星轨道,曾轰动了天文学界。高斯对电磁学的贡献也是巨大的,他提出了磁场的“高斯定律”。

高斯逝世于1855年,终年78岁。和他同时代的科学家,几乎都从他那里得到过教益。一位科学家曾高度评价他说:“如果我们把19世纪的科学家想象成为一系列的高山峻岭,那么使人肃然起敬的峰颠就是高斯。”人们还常常把高斯比作一座桥,认为一个数学家不论来自哪里走向何方,他都必须经过高斯这座桥。

高斯逝世之后,哥廷根大学为他在校园内建了一座塑像,底座是一个正17边形的台基。原来,高斯临终时留有遗嘱,希望在他的墓碑上刻上正十七边的图形。因为他是在用直尺和圆规作出了正十七边图形后才献身数学事业的。

6、高斯的成就有哪些?

在德国流传着一个关于天才男孩的故事,传说一个三岁的小孩帮助他的父亲纠正了借款账目中的错误。这位天才男孩就是后来有“数学王子”之称的高斯。

高斯是数学史上一个转折时期的重要代表人物,他的许多研究成果都具有划时代的意义。

1777年4月30日,高斯生于德国不伦瑞克的一个工匠家庭,幼时家贫,受人资助才进入学校读书。16岁时进入哥廷根大学学习,后转入黑尔姆施泰特大学,1799年获得博士学位。从1807年起担任哥廷根大学教授兼哥廷根天文台台长直至逝世。

被称为天才数学家的高斯,在很小的时候就展现出了极高的数学天赋。上小学的时候,他用很短的时间计算出了对自然数从1到100的求和。他所使用的方法是:对50对构造成和为101的数的求和。同时得到结果:5050。如果说这仅仅是小技巧的话,那么在他16岁的时候预测到了非欧氏几何的必然产生,并且还推导出了二项式定理的一般形式,并发展了数学分析的理论,就不得不承认他天才的智慧了。

在进入哥廷根大学的同年,高斯发现了质数分布定理和最小二乘法。接着他又转入曲面与曲线的计算,并成功得到高斯钟形曲线,这一曲线在概率计算中大量使用。次年,年仅17岁的他首次用尺规构造出了规则的17角形,为欧氏几何自古希腊以来做了首次重要的补充。

在1807年的时候,高斯成为了哥廷根大学的教授和当地天文台的台长,于是他开始涉足于小行星的研究,他利用自己创立的三次观测决定小行星轨道的计算方法,成功计算出了谷神星和智神星的轨道。此后,天文界对小行星轨道的计算几乎都采用这种方法。

1818年至1826年,高斯领导了汉诺威公国的大地测量工作,他利用测量平差和求解线性方程组的方法,使测量的精度得到了极大的提升。在此期间,他白天测量,夜晚计算,在刚开始的五六年间,他经历了上百万次的大地测量数据计算,后来他转入测量数据的研究和计算,从中推导了由椭圆面向圆球面投影时的公式,这些理论在今天仍有很大的应用价值。

在长期的测量中,他发明了还日光反射仪,可以将光束反射至450公里外的地方。但是要利用日光反射仪进行精确测量就必须解决曲面和投影的理论关系,高斯在这段时间开始了对曲面和投影的理论研究。这方面的研究成果为后来微分几何的创立奠定了基础。在非欧氏几何的研究中,他独自提出和证明欧氏几何的平行公设不具有物理的必然性,由于他担心同时代的人不能理解该理论,最终没有发表。但后来量子力学证明了他的观点的正确性。

高斯在数学上的成就十分广泛,在微分几何、非欧几何、超几何级数、数论以及椭圆函数论等方面均有开创性贡献,并且在天文学、大地测量学和磁学的研究中引入数学方法,取得巨大的成就。1855年2月23日,79岁的高斯在哥廷根逝世。为了纪念他,哥廷根大学的校园里建立了一个正17边形台座的高斯雕像。

7、数学家高斯的故事

用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。

小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。


(7)高斯数学创新扩展资料:

重大成就:

19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。

他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。尽管线路才8千米长。

1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。

他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

8、大数学家高斯在数学方面的主要成就是什么?

一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。

高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。

高斯总结了复数的应用

并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

以上内容参考:网络-高斯

9、数学王子高斯究竟有多牛?

李宗盛有一句话我非常赞同:任何一个领域站在顶峰的,靠的都是天赋,你不需要找,他就站在那里,闪闪发光。“数学王子”高斯就是这样的一个人。数学界有这样一句话叫,这个世界上数学界分为两类:其他数学家与高斯。今天我们就来聊聊高斯“神”一般的人生。

高斯出身于一户贫穷人家,仿佛是“数学之神”的阿基米德的转世一般,高斯自小就显示出强大的数学天赋,他的父亲因为贫穷负债累累,高斯三岁的时候,当时高斯的父亲是一位工头,在核算工人们的周薪,高斯看了一眼账本,就已经能够帮父亲纠正账目的错误。

而在8岁的时候,这个到如今已经家喻户晓的故事充分显示了高斯强大的数学天分,高斯7岁的时候首次进入到了学习数学的班级,在这里他遇到了自己人生的第二个伯乐与老师,班级的数学老师布特纳,布特纳有一天布置了一道题目,从1加到100等于多少。

这样的问题对于如今7岁的孩童而言也已然有一定困难。布特纳对学生其实并不友好,出这样的问题也只是想消磨学生的时间,谁知道,高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案,而高斯则列出了自己的计算方法:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。

布特纳第一次看见这样的计算方法,当他隐隐感觉到,高斯未来会是一个成就不可限量的数学天才。他特意跑到汉堡去购买最好的数学教材送给高斯,布特纳虽然并没有教给高斯什么东西,却真正带高斯走上了数学的道路。而这种算法如今也被命名为“高斯算法”。

高斯第一个伯乐和老师其实是他的母亲和舅舅,他的母亲虽然只是一个贫穷石匠的女儿,却智慧开明、目光长远,她坚信高斯未来会有一番不一样的成就,而不像自己的丈夫一样希望高斯获得一份安稳的工作就好。而高斯的舅舅弗利德里希和姐姐一样富有智慧,为人热情而又聪明能干。

他发现姐姐的儿子聪明伶利,因此他将自己的一部分精力投注在高斯的身上,启迪高斯的智慧开阔高斯的思想,并且经常鼓励高斯走上学者的道路,正因为有舅舅在,给予高斯以支撑,才没有让高斯走上泥瓦匠的道路。高斯一直非常感谢舅舅的付出,认为舅舅是一位“天才“。

高斯的人生可谓一路顺遂,虽然出身贫穷却一直拥有伯乐,让他的人生可以走的非常平坦,可以自由幸福地用自己的思想去为数学的王国添砖加瓦。而在他几十年后,未被他理睬过的伽罗瓦却因为缺少伯乐,在21岁的年纪就抱憾而终,让数学王国少了一颗璀璨的明星。

高斯11岁的时候,来到了文科学校,因为自己的聪慧,他的老师和他的母亲将高斯举荐给了布伦兹维克公爵卡尔·威廉·斐迪南,他又遇到了人生的第三位伯乐,公爵岁高斯一生的贵人,在他几十年的人生中,公爵都无私地帮助着高斯,正是因为有公爵的存在,才让高斯的数学研究可以无后顾之忧,按照自己的理想,勤奋地学习和开始进行创造性的研究。。如果没有他,高斯的数学之路将会走的非常坎坷。

布伦兹维克公爵卡尔·威廉·斐迪南

公爵不仅后来让高斯在自己的卡罗琳学院继续学习,还资助他考入了哥廷根大学。一直到高斯获得博士学位,而后来高斯没有工作的时候,公爵依然无私地支援着高斯,让高斯可以拒绝圣彼得堡提供的教授职位,安心从事数学研究。公爵对高斯无私到了什么样的程度呢?

不仅博士论文的印刷费是他出的,还送他高斯一栋房子,还帮高斯印刷了许多他自己的研究成果,还负担了高斯大部分的生活费用。。。简直比对亲儿子还亲。。。高斯也特别感谢公爵,他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

嗯,布伦兹维克公爵卡尔·威廉·斐迪南就因为和高斯沾上了光,就成功留名历史,而且还是研究高斯绕不开的名字,这钱花的真值的。

你会发现,每一个天才,无论是牛顿还是欧拉亦或是高斯,这些在历史上如神一般的人物,无论出身如何,最终都可以遇到伯乐,让自己的人生璀璨生光。只要是天才,无论你身处在什么样的环境,别人总会发现你,燃烧自己或者提供一个平台,让你的光芒可以让世界所有人发现,即使是生无伯乐的伽罗瓦,也在死后遇见了自己难以等来的伯乐。

电影中的高斯形象

当然了,公爵这样无私是因为高斯的确非常出色,让公爵可以相信这样的人是万中无一的天才。在高斯18岁的时候,他就自己发现了质数分布定理和最小二乘法,根据这个发现,他自己创造了一套测量数据处理方法,根据这个新方法,他得到了一个具有概率性质的测量结果,并且把这个测量结果画成了曲线,这种曲线函数分布后来被后人称作为高斯分布图,也被叫做标准正态分布。

高斯19岁的时候就发现了正十七边形的尺规作图法,

当年欧几里得提出了尺规作图,可是还遗留了许多问题,比如正多边形的尺规作图,难倒了2000多年来的许多数学家,高斯在大学二年级时就得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件解决了两千年来悬而未决的难题,他也是世界上第一个成功用代数方法解决几何难题的数学家。才19岁而已,各位可以想想自己19岁的时候在做什么?仅凭这一项高斯就可以青史留名。

但这只是高斯开挂人生的开始,他在19岁那年又证明了二次互反律,二次互反律在数论的发展史中处于中心地位。就连欧拉都没有给出严格的证明,高斯不仅给出了第一个严格的证明,证明了二次互反律,而且后来又给出了7种证明方式。提出一种已经可以算得上是大数学家了,提出了8种,让其他数学家怎么活!

而在高斯博士毕业的时候他还发现了著名的代数基本定理,他认为任何一元代数方程都有根,这篇论文一出举世震惊,后来高斯死后很多数学家都证明了代数基本定理的真实性,高斯也是世界上第一个发现这个定理的数学家。也是高斯的生平经历中最光彩的一段。

不过在他29岁的时候,公爵在抵抗拿破仑的法军中牺牲,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。没有了资助,就只能自己找工作了,高斯想找工作的想法让德俄两国掀起了人才争夺战。

电影中的高斯形象

因为高斯19岁解决了正十七边形的尺规作图法就已经声名鹊起了,彼得堡科学院不断暗示他,自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。而德国一看不行呀,这么牛的人才,怎么能被你俄国人抢去了呢?

彼得堡科学院

德国著名学者洪堡立马联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。再加上公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。高斯就留在了哥廷根。

影视中的洪堡和高斯

这一闹直接让高斯的地位和名气又上了一个档次,俄国都来抢的超级人才,怎么能够不对他好呢?等又走了怎么办!所以高斯一直到去世都过着优渥的生活,他一生也几乎没有离开过哥廷根,毕竟,给了这么丰厚的报酬,要钱给钱要权给全,哪里好意思走。

但是哥廷根这代价花的值得啊,这为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件,自此之后,哥廷根一直都是学术的中心,不仅是数学,物理也是,物理学家索末菲领导的哥廷根学派一直是20世纪初物理的中心之一。

当然了,高斯最传奇的人生经历之一,就是推测出了谷神星的位置,当时一名叫丢提斯的中学老师,发现一组数列每一项与当时已知的六大行星(即水星、金星、地球、火星、木星、土星)到太阳的距离比例(地球到太阳的距离定为1个单位)有着一定的联系。

后来赫歇尔根据这个数列发现了天王星,证明了这组数列的正确性,可是还有一颗火星和木星轨道间的小行星没有被发现。当时一名牧师皮亚齐已经观测到,当是后来又不见了。高斯对这个事情非常感兴趣,高斯经过艰苦的运算,以其卓越的数学才能创立了一种崭新的行星轨道计算理论。他根据皮亚齐的观测资料,利用这种方法,只用了一个小时就算出了谷神星的轨道形状,并指出它将于何时出现在哪一片天空里。

皮亚齐

1801年12月31日夜,德国天文爱好者奥伯斯,在高斯预言的时间里,用望远镜对准了这片天空。不出所料,谷神星再一次奇迹般地出现了。这个崭新的行星轨道计算理论也是后来天文学家公认的测量行星运动轨迹最简便最科学的方法。高斯后来还用他计算出了智神星的天体运行轨迹。

奥伯斯根据高斯的方法观测到了谷神星和智神星

在以前的欧洲,几何都是以欧几里得几何学派为宗,但是高斯却认为这欧几里得几何学派已经没有办法解决一些问题了,他后来和其他数学家又提出了非欧几何。非欧几何影响着现代自然科学、现代数学和数学哲学的发展。

除此之外,被称为“数学王子”的高斯在其他领域也都有着卓越的成就,也是一个全民开花的人。比如他自从用数学方法计算出了天体的运行轨迹,就出了一本书叫《天体运行理论》,时至今日,高斯当年的研究仍然是天文学计算的基石。

1833年,高斯还和物理学教授威廉韦伯发明了第一台电磁电报机。在哥廷根大学,他们俩一直在磁学领域不断合作。他们建造了第一台电报机,以连接天文台和物理研究所,这个系统能够每分钟发送8个单词。后来,国际单位制中磁通量的单位“韦伯”就是以威廉·韦伯的名字命名的。

韦伯和高斯

高斯还发明了简易版GPS系统——日光反射镜,这是一种大大改善长距离土地测量的仪器。日光反射镜用一面镜子把太阳光反射到遥远的地方,可以达到几百千米远,这能够为测量员标记位置。可惜,这种仪器需要在天气晴朗的情况下才有很好的效果。到了20世纪80年代,GPS技术取代了它。

可以说,高斯他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

以他名字“高斯”命名的成果达110个,属数学家中之最,比如说高斯分布(正态分布),高斯模糊,高斯积分,高斯整数,高斯消元,高斯曲率,高斯滤波器,高斯引力常数。可以说大物里有高斯、高数里也有高斯、几何里也有高斯、….你闭上眼睛,在理工科(技术类)书籍里随便挑一本书。里面一定能找到Gaussian这么个名字…你随便拆一个app看代码。,一般一定有不止一个公式(或者包里的公式)和高斯有关。

你好不容易学一个平面设计,平面设计里还有高斯模糊。。。可以说,高斯无处不在。

高斯之墓

这还是高斯并没有把自己所有研究成果全部发表出来的情况下,高斯是一个非常谨慎的人,估计是怕打脸,他对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

欧几何的的开山祖师有三人,分别是高斯、

洛巴切夫斯基,波尔约。其中波尔约的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小波尔约还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老波尔约把儿子的成果寄给老同学高斯,想不到高斯却回信道:我无法夸赞他,因为夸赞他就等于夸奖我自己。早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

波尔约

快速傅立叶变换FFT的基本思路在1965年之后开始为人所知。但后来发现,实际上发现这思路的两位作者只是重新发明了高斯在1805年就已经提出的算法。可想而知,高斯领先了同时代的人160年。

数学家雅克比跟高斯差不多生活在同一个时代,但是他要比高斯小近三十岁。雅克比本人在椭圆函数领域上做了很多工作,他曾经拜访过几次高斯并向高斯陈述了自己在椭圆函数方面的最新进展,但是每次高斯都能从书桌里拿出一堆三十多年前的手稿向雅克比证明“你刚才说的东西我早就发现了”......

经历过几次这样的事情后,雅克比写信给他的兄长,在信中他是这么说的:“像高斯这样的巨人,如果他不是把晚年的精力放在天文学上,今天的数学界恐怕完全会是另外一种模样了。“

高斯和阿基米德、牛顿、欧拉并列为世界四大数学家,和欧拉一样,欧拉的许多成果毁于大火,而高斯的成果则散落于与朋友的书信以及笔记之间,没有发表。如果这两位大师都可以把自己的所有成果公布于众,那么数学的发展至少要提前一个世界。

高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰……人类智力领域的几乎所有褒奖之词,可以说对于高斯都不过分。而爱因斯坦曾评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

贝尔曾经这样评论高斯:在高斯死后,人们才知道他早就预见一些十九世纪的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。



最后说一句:高斯真牛!

10、高斯的数学成就是什么?

发现了质数分布定理和最小二乘法、高斯推导了复活节日期的计算公式等等。

17岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布,并在概率计算中大量使用。

高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

天赋异禀

当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

热点内容
我要开店淘宝 发布:2020-09-09 12:06:51 浏览:854
十大相机品牌 发布:2020-08-29 10:57:46 浏览:788
淋浴器十大品牌 发布:2020-08-29 01:52:31 浏览:627
开店宝支付 发布:2020-09-15 10:25:50 浏览:560
技术专利申请 发布:2020-08-27 21:42:43 浏览:545
怎么扫条形码 发布:2020-08-29 10:28:31 浏览:538
怎么保护知识产权 发布:2020-08-29 01:30:26 浏览:535
济南创新谷 发布:2020-09-10 04:19:14 浏览:533
淘宝开店照片要求 发布:2020-09-09 12:08:29 浏览:532
开店美发 发布:2020-09-02 20:04:55 浏览:531